#include #include #include #include #include #include "print.h" #include "fs.h" #include "config.h" const static int BLOCK_ADDRESSES_PER_INODE = (FS_BLOCK_SIZE-sizeof(int)*3) / sizeof(int); const static int BLOCK_ADDRESSES_PER_INODE_EXTENSION = (FS_BLOCK_SIZE-sizeof(int)) / sizeof(int); const static int DIRECTORY_RECORDS_PER_BLOCK = FS_BLOCK_SIZE / sizeof(struct fs_directory_record); static char used_file_path[FS_MAX_DEVICE_FILE_NAME_LEN+1]; static int used_file_fd; static int write_permitted; static char fs_cwd[FS_MAX_PATH_LEN+1]; static unsigned int fs_cwd_inode_ptr; static struct fs_file_description fs_file_descriptions[FS_MAX_OPEN_FD]; static int read_block(unsigned int block_no, void *data) { if (lseek(used_file_fd, block_no * FS_BLOCK_SIZE, SEEK_SET) < 0) { pr_err("failed to seek to block %d (bs=%d) on device '%s'\n", block_no, FS_BLOCK_SIZE, used_file_path); return -1; } return read(used_file_fd, data, FS_BLOCK_SIZE); } static int write_block(unsigned int block_no, void *data) { if (!write_permitted) { pr_err("write operations are prohibited\n"); return -1; } if (lseek(used_file_fd, block_no * FS_BLOCK_SIZE, SEEK_SET) < 0) { pr_err("failed to seek to block %d (bs=%d) on device '%s'\n", block_no, FS_BLOCK_SIZE, used_file_path); return -1; } return write(used_file_fd, data, FS_BLOCK_SIZE); } static void mark_used(unsigned int block_no) { struct fs_header fsh; read_block(0, (void *) &fsh); if (block_no > fsh.block_count) { pr_err("block %d is out of filesystem block range (%d)\n", block_no, fsh.block_count); return; } unsigned char bitmap_bit = 1 << (block_no & 0x7); unsigned int bitmap_block_offset = (block_no >> 3) % FS_BLOCK_SIZE; unsigned int bitmap_block_index = (block_no >> 3) / FS_BLOCK_SIZE; unsigned char bitmap_block[FS_BLOCK_SIZE]; read_block(bitmap_block_index+1, (void *) bitmap_block); bitmap_block[bitmap_block_offset] |= bitmap_bit; // write changes to device write_block(bitmap_block_index+1, (void *) &bitmap_block); pr("Marked block_no=%d (block=%d, offset=%d, bit=%d) as used\n", block_no, bitmap_block_index, bitmap_block_offset, block_no & 0x7); } static void mark_free(unsigned int block_no) { struct fs_header fsh; read_block(0, (void *) &fsh); if (block_no > fsh.block_count) { pr_err("block %d is out of fimesystem block range (%d)\n", block_no, fsh.block_count); return; } unsigned char bitmap_bit = 1 << (block_no & 0x7); unsigned int bitmap_block_offset = (block_no >> 3) % FS_BLOCK_SIZE; unsigned int bitmap_block_index = (block_no >> 3) / FS_BLOCK_SIZE; unsigned char bitmap_block[FS_BLOCK_SIZE]; read_block(bitmap_block_index+1, (void *) bitmap_block); bitmap_block[bitmap_block_offset] &= ~bitmap_bit; // write changes to device write_block(bitmap_block_index+1, (void *) bitmap_block); pr("Marked block_no=%d (block=%d, offset=%d, bit=%d) as free\n", block_no, bitmap_block_index, bitmap_block_offset, bitmap_bit); } static int identify_fs(void) { struct fs_header read_buf; { int read_amount = read_block(0, (void *) &read_buf); if (read_amount < 0) { pr_err("failed to read fs_header from storage device '%s'\n", used_file_path); return 0; } if (read_amount < FS_BLOCK_SIZE) { pr_warn("failed to read full block (read %d/%d bytes)\n", read_amount, FS_BLOCK_SIZE); } else if (read_amount == 0) { pr_err("storage device size is 0\n"); return 0; } } if (read_buf.next_extension) { pr_info("identified filesystem version 0x%hhx with %d max inodes (on %d blocks), next header extension is at block 0x%x\n", read_buf.version, read_buf.max_inode_count, read_buf.block_count, read_buf.next_extension); } else { pr_info("identified filesystem version 0x%hhx with %d max inodes (on %d blocks), with no header extensions\n", read_buf.version, read_buf.max_inode_count, read_buf.block_count); } return read_buf.version; } static unsigned int find_free_block(void) { unsigned int b = 0; struct fs_header fsh; read_block(0, (void *) &fsh); int blocks_used_for_bitmap = fsh.block_count / (FS_BLOCK_SIZE * 8); if (fsh.block_count % (FS_BLOCK_SIZE * 8)) blocks_used_for_bitmap++; for (int i = 0; i < blocks_used_for_bitmap; i++) { unsigned char bitmap_block[FS_BLOCK_SIZE]; read_block(i+1, (void *) bitmap_block); for (int j = 0; j < FS_BLOCK_SIZE; j++) { if (!(~(bitmap_block[j]))) { b += 8; } else { for (int k = 0; k < 8; k++, b++) { if (!((bitmap_block[j]) & (1 << k))) { return b; } } } } } return 0; } static unsigned int find_free_inode_ptr(void) { unsigned int i = 1; // inode0 always points to root dir, so can't be free struct fs_header fsh; read_block(0, (void *) &fsh); // search fs_header for ( ; i < BLOCK_ADDRESSES_PER_INODE; i++) { if (fsh.inode_ptrs[i] == 0) { if (i < fsh.max_inode_count) { return i; } else { return 0; } } } // search fs_header_extensions struct fs_header_extension ext; unsigned int next_extension = fsh.next_extension; while (next_extension) { read_block(next_extension, (void *) &ext); next_extension = ext.next_extension; for (int j = 0; j < BLOCK_ADDRESSES_PER_INODE_EXTENSION; j++, i++) { if (ext.inode_ptrs[j] == 0) { if (i < fsh.max_inode_count) { return i; } else { return 0; } } } } if (i < fsh.max_inode_count) { return i; } else { return 0; } } static unsigned int read_inode_ptr(unsigned int inode_ptr) { if ((inode_ptr / BLOCK_ADDRESSES_PER_INODE) == 0) { // inode_ptr is in the fs_header struct fs_header fsh; int read_result = read_block(0, &fsh); if (FS_BLOCK_SIZE != read_result) { if (read_result < 0) { pr_err("failed to read fs header from device '%s'\n", used_file_path); } else { pr_err("failed to read full header from device (read %d/%d bytes)\n", read_result, FS_BLOCK_SIZE); } return 0; } return fsh.inode_ptrs[inode_ptr]; } else { pr_err("inode_ptr %d is in fs_header_extension, reading is not implemented\n", inode_ptr); return 0; // TODO: find block with relevant inode_ptr /* unsigned int relevant_block_index = ((free_block_index - BLOCK_ADDRESSES_PER_INODE) / BLOCK_ADDRESSES_PER_INODE_EXTENSION) + 1; unsigned int relevant_block_record_offset = (free_block_index - BLOCK_ADDRESSES_PER_INODE) % BLOCK_ADDRESSES_PER_INODE_EXTENSION; */ } } static void write_inode_ptr(unsigned int inode_ptr, unsigned int block_ptr) { if ((inode_ptr / BLOCK_ADDRESSES_PER_INODE) == 0) { // inode_ptr is in the fs_header struct fs_header fsh; int read_result = read_block(0, &fsh); if (FS_BLOCK_SIZE != read_result) { if (read_result < 0) { pr_err("failed to read fs header from device '%s'\n", used_file_path); } else { pr_err("failed to read full header from device (read %d/%d bytes)\n", read_result, FS_BLOCK_SIZE); } return; } fsh.inode_ptrs[inode_ptr] = block_ptr; int write_result = write_block(0, (void *) &fsh); if (FS_BLOCK_SIZE != write_result) { if (write_result < 0) { pr_err("failed to write fs header to device '%s'\n", used_file_path); } else { pr_err("failed to write full block to device, written %d/%d bytes\n", write_result, FS_BLOCK_SIZE); } return; } pr("Updated inode ptr %d -> %d\n", inode_ptr, block_ptr); } else { pr_err("inode_ptr %d is in fs_header_extension, writing is not implemented\n", inode_ptr); // TODO: find block with relevant inode_ptr, extend fs_header if needed /* unsigned int relevant_block_index = ((free_block_index - BLOCK_ADDRESSES_PER_INODE) / BLOCK_ADDRESSES_PER_INODE_EXTENSION) + 1; unsigned int relevant_block_record_offset = (free_block_index - BLOCK_ADDRESSES_PER_INODE) % BLOCK_ADDRESSES_PER_INODE_EXTENSION; */ } } char *fs_get_cwd(void) { return fs_cwd; } int fs_chdir(void *d) { memset(fs_cwd, 0, sizeof(fs_cwd)); strcpy(fs_cwd, *((char**)d)); return 0; } int fs_allow_write(void *d) { if (used_file_fd <= 0) { pr_err("no device present\n"); return 0; } pr_info("Allowing write operations on device '%s'\n", used_file_path); write_permitted = 1; return 0; } int fs_prohibit_write(void *d) { if (used_file_fd <= 0) { pr_err("no device present\n"); return 0; } pr_info("Prohibiting write operations on device '%s'\n", used_file_path); write_permitted = 0; return 0; } static int fs_find_free_directory_record(unsigned int dir_inode_ptr) { struct fs_header fsh; read_block(0, (void *) &fsh); struct fs_inode dir; read_block(read_inode_ptr(dir_inode_ptr), (void *) &dir); int found_block_no = 0; // search in base inode for (unsigned int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record r[DIRECTORY_RECORDS_PER_BLOCK]; if (!dir.blocks[i]) { if (found_block_no < fsh.max_inode_count) return (found_block_no); else return -1; } read_block(dir.blocks[i], (void *) &r); for (int j = 0; j < DIRECTORY_RECORDS_PER_BLOCK; j++, found_block_no++) { if (r[j].inode_no) continue; if (found_block_no >= fsh.max_inode_count) return -1; return found_block_no; } } // search in inode extensions // TODO return -1; } static int *find_filename_in_directory(unsigned int dir_inode_ptr, char *fname) { int dir_inode = read_inode_ptr(fs_cwd_inode_ptr); struct fs_inode dir; read_block(dir_inode, (void *) &dir); // list entries from base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; if (dir.blocks[i]) { read_block(dir.blocks[i], (void *) &recs); for (int k = 0; k < DIRECTORY_RECORDS_PER_BLOCK; k++) { if (!recs[k].inode_no) continue; if (strcmp(fname, recs[k].fname)) continue; // filename found int *r = malloc(sizeof(int) * 3); r[0] = i; r[1] = k; r[2] = recs[k].inode_no; return r; } } } return NULL; } static int fs_add_fname_to_directory(unsigned int dir_inode_ptr, unsigned int target_inode_ptr, char *fname) { { // check if duplicate filename exists in specified directory int *r = find_filename_in_directory(dir_inode_ptr, fname); if (r) { free(r); pr_err("filename '%s' already exists\n", fname); return 0; } } int new_directory_record_index = fs_find_free_directory_record(dir_inode_ptr); if (new_directory_record_index < 0) { pr_err("no free inode pointer found\n"); return -1; } if (new_directory_record_index < DIRECTORY_RECORDS_PER_BLOCK * BLOCK_ADDRESSES_PER_INODE) { // record is located in base inode, writing to it int block_no = new_directory_record_index / DIRECTORY_RECORDS_PER_BLOCK; int block_offset = new_directory_record_index % DIRECTORY_RECORDS_PER_BLOCK; struct fs_inode dir_inode; read_block(read_inode_ptr(dir_inode_ptr), (void *) &dir_inode); if (dir_inode.blocks[block_no] == 0) { // allocate new block unsigned int new_block = find_free_block(); if (new_block == 0) { pr_err("failed to allocate block to extend directory (inode_ptr=%d)\n", dir_inode_ptr); return -1; } else { pr("Allocated new physical block %d for inode_ptr=%d (inode=%d, inner_block_no=%d)\n", new_block, dir_inode_ptr, read_inode_ptr(dir_inode_ptr), block_no); } char zero_data[FS_BLOCK_SIZE] = {}; memset(zero_data, 0, FS_BLOCK_SIZE); write_block(new_block, &zero_data); mark_used(new_block); dir_inode.blocks[block_no] = new_block; if (dir_inode.size <= block_no * FS_BLOCK_SIZE) { pr("Updated directory size at inode_ptr=%d: %d -> %d\n", dir_inode_ptr, dir_inode.size, (block_no + 1) * FS_BLOCK_SIZE); dir_inode.size = (block_no + 1) * FS_BLOCK_SIZE; write_block(read_inode_ptr(dir_inode_ptr), (void *) &dir_inode); } } struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; read_block(dir_inode.blocks[block_no], (void *) &recs); strcpy(recs[block_offset].fname, fname); recs[block_offset].inode_no = target_inode_ptr; write_block(dir_inode.blocks[block_no], (void *) &recs); pr("Written new directory record #%d for file '%s' (-> inode_ptr=%d) in inode_ptr=%d\n", new_directory_record_index, fname, target_inode_ptr, dir_inode_ptr); return 0; } else { // record is located in inode extension // TODO } } static int fs_remove_fname_from_directory(unsigned int dir_inode_ptr, char *fname) { // find directory record with this fname int dir_inode = read_inode_ptr(fs_cwd_inode_ptr); struct fs_inode dir; read_block(dir_inode, (void *) &dir); // list entries from base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; if (!dir.blocks[i]) continue; read_block(dir.blocks[i], (void *) &recs); for (int k = 0; k < DIRECTORY_RECORDS_PER_BLOCK; k++) { if (!recs[k].inode_no) continue; if (strcmp(fname, recs[k].fname)) continue; pr("Directory record for '%s' found in block=%d, record=%d, removing\n", fname, i, k); unsigned int inode_ptr_cache = recs[k].inode_no; unsigned int inode_location_cache = read_inode_ptr(recs[k].inode_no); // decrement ref_count struct fs_inode f; read_block(read_inode_ptr(recs[k].inode_no), (void *) &f); f.ref_count--; write_block(read_inode_ptr(recs[k].inode_no), (void *) &f); // clear directory record inode_ptr recs[k].inode_no = 0; write_block(dir.blocks[i], (void *) &recs); // if it drops to zero, nullify inode_ptr pointing to this inode if (f.ref_count) goto fs_remove_fname_from_directory_finish; pr("ref_count=0, clearing inode_ptr\n"); write_inode_ptr(inode_ptr_cache, 0); // if no fd reference this inode, clean it up altogether int i; for (i = 0; i < FS_MAX_OPEN_FD; i++) if (fs_file_descriptions[i].inode == inode_location_cache) break; if (i != FS_MAX_OPEN_FD) { pr("Inode %d is still referenced by fd %d, not removing it\n", inode_location_cache, i); goto fs_remove_fname_from_directory_finish; } pr("No open fd reference inode %d, cleaning up\n", inode_location_cache); // clear blocks referenced in base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { if (f.blocks[i]) mark_free(f.blocks[i]); } mark_free(inode_location_cache); // clear blocks referenced in inode extensions struct fs_inode_extension ext; unsigned int next_extension = f.next_extension; while (next_extension) { mark_free(next_extension); read_block(next_extension, (void *) &ext); next_extension = ext.next_extension; for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE_EXTENSION; i++) { if (ext.blocks[i]) mark_free(ext.blocks[i]); } } goto fs_remove_fname_from_directory_finish; } } // list entries from inode extension // TODO pr_err("no such file '%s'\n", fname); return -1; fs_remove_fname_from_directory_finish: pr("Removed fname from directory record successfully\n"); return 0; } int fs_open(void *d) { char *fname = *((char **) d); // find file inode struct fs_file_description fd; { int *r = find_filename_in_directory(fs_cwd_inode_ptr, fname); if (!r) { pr_err("no such file: '%s'\n", fname); return 0; } fd.inode = read_inode_ptr(r[2]); free(r); } fd.rw_offset = 0; // find free file descriptor int free_fd; for (free_fd = 0; (free_fd < FS_MAX_OPEN_FD) && (fs_file_descriptions[free_fd].inode); free_fd++); if (free_fd == FS_MAX_OPEN_FD) { pr_err("no free file descriptor found\n"); return 0; } memcpy(&(fs_file_descriptions[free_fd]), &fd, sizeof(struct fs_file_description)); pr_stdout("%d\n", free_fd); return 0; } int fs_close(void *d) { int fd = *((int *) d); // remove inode number from fd if (!fs_file_descriptions[fd].inode) { pr_err("fd %d is not open\n", fd); return 0; } unsigned int inode_location_cache = fs_file_descriptions[fd].inode; fs_file_descriptions[fd].inode = 0; pr("fd %d closed\n", fd); // cleanup file data on disk if ref_count=0 // and no other open descriptor references it's inode struct fs_inode f; read_block(inode_location_cache, (void *) &f); if (f.ref_count) return 0; for (int i = 0; i < FS_MAX_OPEN_FD; i++) if (fs_file_descriptions[i].inode == inode_location_cache) return 0; // if ended up here, the inode is not referenced anywhere pr("No open fd reference inode %d, cleaning up\n", inode_location_cache); // clear blocks referenced in base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { if (f.blocks[i]) mark_free(f.blocks[i]); } mark_free(inode_location_cache); // clear blocks referenced in inode extensions struct fs_inode_extension ext; unsigned int next_extension = f.next_extension; while (next_extension) { mark_free(next_extension); read_block(next_extension, (void *) &ext); next_extension = ext.next_extension; for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE_EXTENSION; i++) { if (ext.blocks[i]) mark_free(ext.blocks[i]); } } } int fs_create(void *d) { if (!write_permitted) { pr_err("write operations are prohibited\n"); return 0; } char *fname = *((char **) d); int fname_len = strlen(fname); { // check if duplicate filename exists in current directory int *r = find_filename_in_directory(fs_cwd_inode_ptr, fname); if (r) { free(r); pr_err("filename '%s' already exists\n", fname); return 0; } } if (fname_len > 59) { pr_err("filename too long (%d > %d)\n", fname_len, 59); return 0; } pr("Creating regular file '%s'\n", fname); int inode_block_no = find_free_block(); if (!inode_block_no) { pr_err("no free blocks available to save file inode\n"); return 0; } // write new file inode struct fs_inode newf = {}; newf.ftype = REGULAR; newf.ref_count = 1; newf.size = 0; { int bytes_written = write_block(inode_block_no, (void *) &newf); if (bytes_written < 0) { pr_err("failed to write inode block to device '%s'\n", used_file_path); return 0; } else if (bytes_written < FS_BLOCK_SIZE) { pr_err("failed to write full inode block to device '%s' (written %d/%d bytes)\n", used_file_path, bytes_written, FS_BLOCK_SIZE); return 0; } else { pr("Written inode block to device '%s'\n", used_file_path); } mark_used(inode_block_no); } // allocate and write inode pointer for new inode unsigned int inode_ptr_index = find_free_inode_ptr(); if (!inode_ptr_index) { pr_err("no free inode ptr found\n"); return 0; } write_inode_ptr(inode_ptr_index, inode_block_no); // add filename to current directory inode fs_add_fname_to_directory(fs_cwd_inode_ptr, inode_ptr_index, fname); return 0; } int fs_ln(void *d) { if (used_file_fd <= 0) { pr_err("no storage device\n"); return 0; } char *existing_fname = ((char **) d)[0]; char *new_fname = ((char **)d)[1]; int new_fname_len = strlen(new_fname); { // check if duplicate filename exists in current directory int *r = find_filename_in_directory(fs_cwd_inode_ptr, new_fname); if (r) { free(r); pr_err("filename '%s' already exists\n", new_fname); return 0; } } if (new_fname_len > 59) { pr_err("new filename too long (%d > 59)\n", new_fname_len); return 0; } pr("Making hard link '%s' -> '%s'\n", new_fname, existing_fname); // find original file name unsigned int original_inode_ptr = 0; int dir_inode = read_inode_ptr(fs_cwd_inode_ptr); struct fs_inode dir; read_block(dir_inode, (void *) &dir); // list entries from base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; if (dir.blocks[i]) { read_block(dir.blocks[i], (void *) &recs); for (int k = 0; k < DIRECTORY_RECORDS_PER_BLOCK; k++) { if (!recs[k].inode_no) continue; if (!strcmp(existing_fname, recs[k].fname)) { original_inode_ptr = recs[k].inode_no; goto original_inode_ptr_found; } } } } // list entries from inode extensions // TODO pr_err("no such file '%s'\n", existing_fname); return 0; original_inode_ptr_found: pr("Original inode_ptr found (%d)\n", original_inode_ptr); // register new filename with the same inode_ptr if (fs_add_fname_to_directory(fs_cwd_inode_ptr, original_inode_ptr, new_fname) < 0) { pr_err("failed to register filename in directory '%s'\n", fs_cwd); return 0; } else { pr("Registered new filename in directory '%s'\n", fs_cwd); } // update ref_count in file inode struct fs_inode f; read_block(read_inode_ptr(original_inode_ptr), (void *) &f); f.ref_count++; write_block(read_inode_ptr(original_inode_ptr), (void *) &f); pr("Updated inode ref_count (%d -> %d)\n", f.ref_count-1, f.ref_count); } int fs_rm(void *d) { if (!write_permitted) { pr_err("device '%s' is write-protected\n", used_file_path); return 0; } char *fname = *((char **) d); if (fs_remove_fname_from_directory(fs_cwd_inode_ptr, fname) < 0) { pr_err("failed to unlink '%s'\n", fname); } else { pr("Unlinked '%s'\n", fname); } return 0; } int fs_ls(void *d) { if (used_file_fd <= 0) { pr_err("no storage device\n"); return 0; } int dir_inode = read_inode_ptr(fs_cwd_inode_ptr); struct fs_inode dir; read_block(dir_inode, (void *) &dir); // list entries from base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; if (dir.blocks[i]) { read_block(dir.blocks[i], (void *) &recs); for (int k = 0; k < DIRECTORY_RECORDS_PER_BLOCK; k++) { if (!recs[k].inode_no) continue; pr_stdout("%s\n", recs[k].fname); } } } // list entries from inode extension // TODO return 0; } int fs_la(void *d) { if (used_file_fd <= 0) { pr_err("no storage device\n"); return 0; } int dir_inode = read_inode_ptr(fs_cwd_inode_ptr); struct fs_inode dir; read_block(dir_inode, (void *) &dir); pr_stdout("directory size: %d\n", dir.size); // list entries from base inode for (int i = 0; i < BLOCK_ADDRESSES_PER_INODE; i++) { struct fs_directory_record recs[DIRECTORY_RECORDS_PER_BLOCK]; if (dir.blocks[i]) { read_block(dir.blocks[i], (void *) &recs); for (int k = 0; k < DIRECTORY_RECORDS_PER_BLOCK; k++) { if (!recs[k].inode_no) continue; struct fs_inode f_inode; read_block(read_inode_ptr(recs[k].inode_no), (void *) &f_inode); if (f_inode.ftype == DIRECTORY) { pr_stdout(COLOR_BLUE "%s" COLOR_RESET "(inode_ptr=%d -> inode=%d, ref_count=%d, size=%d, type=dir)\n", recs[k].fname, recs[k].inode_no, read_inode_ptr(recs[k].inode_no), f_inode.ref_count, f_inode.size); } else { pr_stdout("%s (inode_ptr=%d -> inode=%d, ref_count=%d, size=%d, type=reg)\n", recs[k].fname, recs[k].inode_no, read_inode_ptr(recs[k].inode_no), f_inode.ref_count, f_inode.size); } } } } // list entries from inode extension // TODO return 0; } int fs_use(void *d) { char *fname = *((char **) d); int name_len = strlen(fname); if (name_len > FS_MAX_DEVICE_FILE_NAME_LEN) { pr_err("device filename too long (> %d)\n", FS_MAX_DEVICE_FILE_NAME_LEN); return 0; } pr("Using file '%s' as storage device\n", fname); strcpy(used_file_path, fname); if (used_file_fd > 0) close(used_file_fd); used_file_fd = open(fname, O_RDWR); if (used_file_fd < 0) { pr_err("failed to open filename '%s'\n", fname); return 0; } int fs_version = identify_fs(); if (!fs_version) { pr_info("filesystem could not be identified on device '%s'\n", fname); write_permitted = 0; } else if (fs_version != 1) { pr_warn("filesystem is corrupted or has unsupported version (0x%hhx)\n", fs_version); write_permitted = 0; } else if (fs_version == 1) { pr_info("filesystem v1 has been identified on device '%s'\n", fname); write_permitted = 1; } if (write_permitted) { char *root_dir_path = "/"; fs_chdir((void *) &root_dir_path); fs_cwd_inode_ptr = 0; } return 0; } int fs_mkfs(void *d) { if (!write_permitted) { pr_err("device '%s' is write-protected\n", used_file_path); return 0; } if (used_file_fd <= 0) { pr_err("storage device not present\n"); return 0; } int max_inode_count = *((int *)d); if (max_inode_count <= 0) { pr_err("max inode count must be positive (got %d)\n", max_inode_count); return 0; } struct stat st; if (fstat(used_file_fd, &st) < 0) { pr_err("could not stat device '%s'\n", used_file_path); return 0; } int block_count = st.st_size / FS_BLOCK_SIZE; int blocks_used_for_bitmap = block_count / (FS_BLOCK_SIZE * 8); if (block_count % (FS_BLOCK_SIZE * 8)) blocks_used_for_bitmap++; if (blocks_used_for_bitmap > FS_MAX_BITMAP_SIZE) { pr_err("memory bitmap is too large (%d blocks > %d)\n", blocks_used_for_bitmap, FS_MAX_BITMAP_SIZE); return 0; } pr("Formatting storage device '%s' of size %d (total_block_count = %d, bitmap_blocks = %d) with %d allowed inode pointers\n", used_file_path, st.st_size, block_count, blocks_used_for_bitmap, max_inode_count); struct fs_header fsh = {}; fsh.version = 0x1; fsh.max_inode_count = max_inode_count; fsh.block_count = block_count; pr("header size is %d bytes, writing it to the first block\n", sizeof(fsh)); int result = write_block(0, (void *) &fsh); if (FS_BLOCK_SIZE != result) { if (result < 0) { pr_err("failed to write fs header to device '%s'\n", used_file_path); } else { pr_err("failed to write full block to device, written %d/%d bytes\n", result, FS_BLOCK_SIZE); } return 0; } int blocks_used = 1 + blocks_used_for_bitmap; unsigned char bitmap_block[FS_BLOCK_SIZE]; unsigned int j = 0; for (int i = 0; i < blocks_used_for_bitmap; i++) { memset(bitmap_block, 0, FS_BLOCK_SIZE); for (int k = 0; k < FS_BLOCK_SIZE; k++) { for (int t = 0; t < 8; t++, j++) { if (j == blocks_used) goto finish_current_block; bitmap_block[i] |= (1 << t); } } finish_current_block: { int bytes_written = write_block(i+1, (void *) bitmap_block); if (bytes_written < 0) { pr_err("failed to write bitmap block %d/%d on device '%s'\n", i+1, blocks_used_for_bitmap, used_file_path); return 0; } else if (bytes_written < FS_BLOCK_SIZE) { pr_err("failed to write full bitmap block %d/%d on device '%s' (written %d/%d bytes)\n", i+1, blocks_used_for_bitmap, used_file_path, bytes_written, FS_BLOCK_SIZE); return 0; } else { pr("Written bitmap block %d/%d on device '%s'\n", i+1, blocks_used_for_bitmap, used_file_path); } } } // create root directory automatically struct fs_inode root_dir = {}; root_dir.ftype = DIRECTORY; root_dir.ref_count = 1; unsigned int free_block_index = find_free_block(); if (!free_block_index) { pr_err("failed to find free block for root directory\n"); return 0; } { int bytes_written = write_block(free_block_index, (void *) &root_dir); if (bytes_written < 0) { pr_err("failed to write root directory block on device '%s'\n", used_file_path); return 0; } else if (bytes_written < FS_BLOCK_SIZE) { pr_err("failed to write full root directory block on device '%s' (written %d/%d bytes)\n", used_file_path, bytes_written, FS_BLOCK_SIZE); return 0; } else { pr("Written root directory block on device '%s'\n", used_file_path); } } mark_used(free_block_index); // inode0 -> root_dir_block write_inode_ptr(0, free_block_index); char *root_dir_path = "/"; fs_chdir((void *) &root_dir_path); fs_cwd_inode_ptr = 0; return 0; }