import albumentations as a import numpy as np #from ultralytics import YOLO from os import listdir as ls import cv2 as cv #from pybboxes import BoundingBox as bb #import torch def b_c(b, s = (1920, 1080)): return [ round(b[0] * s[0] - b[2] * s[0] / 2), round(b[0] * s[0] + b[2] * s[0] / 2), round(b[1] * s[1] - b[3] * s[1] / 2), round(b[1] * s[1] + b[3] * s[1] / 2), ] def sq(img, bbox): for i in bbox: b = b_c(i, s = (img.shape[1], img.shape[0])) #print(b) cv.rectangle(img, (b[0], b[2]), (b[1], b[3]), (255, 0, 0), 2) base_path = '../videos/total' tagt_path = '../videos/total-exp' t = a.Compose([ a.BBoxSafeRandomCrop(), a.HorizontalFlip(p=0.5), a.RandomBrightnessContrast(p=0.2) ], bbox_params=a.BboxParams(format='yolo', label_fields=['class_labels'])) fs = set([i.rsplit(".", 1)[0] for i in ls(base_path) if i != "classes.txt"]) for i in list(fs)[:1]: img = cv.cvtColor(cv.imread(f"{base_path}/{i}.jpg"), cv.COLOR_BGR2RGB) box = [tuple(map(float, j.split()[1:])) for j in open(f"{base_path}/{i}.txt").read().split("\n") if j] #for j in open(f"{base_path}/{i}.txt").read().split("\n"): # box.append(tuple(map(float, j.split()[1:]))) print(box) lbl = np.array(['ch'] * len(box)) box = np.array(box) #sq(img, box) r = t(image = img, bboxes = box, class_labels = lbl) out_img = r['image'] out_box = r['bboxes'] out_lbl = r['class_labels'] sq(out_img, out_box) from matplotlib import pyplot as plt plt.imshow(out_img) plt.show() #y = YOLO("m.yaml") #y.info() #o = y.model(torch.randn(1, 3, 640, 640))