from model import * from preprocessing import * import pandas as pd from cc import ce bs = 32 data = pd.read_csv("/mnt/tmpfs1/LJSpeech-1.1/metadata.csv", sep = '|', header = None, quoting = 3, names = ['file_name', 'i', 'normalized_transcription']) s = int(len(data) * 0.90) train_data = data[:s] valid_data = data[s:] train_ds = to_dataset(train_data, batch_size = bs) valid_ds = to_dataset(valid_data, batch_size = bs) m = model(input_dim = fft_length // 2 + 1, output_dim = char_to_num.vocabulary_size()) m.load_weights('model40-latest.keras') ckpt1 = kc.ModelCheckpoint('model41-latest.keras', monitor = 'val_loss', save_best_only = False, verbose = 1) ckpt2 = kc.ModelCheckpoint('model41-best.keras', monitor = 'val_loss', save_best_only = True, verbose = 1) ce1 = ce(valid_ds, m) m.fit(train_ds, epochs = 40, validation_data = valid_ds, callbacks = [ckpt1, ckpt2, ce1])