incremental backup

This commit is contained in:
ІО-23 Шмуляр Олег 2025-12-11 09:32:21 +02:00
parent 03712e07d8
commit e0ea8c5387
2 changed files with 6 additions and 6 deletions

View File

@ -15,7 +15,7 @@ from loss import CTCLoss
# tf.config.experimental.set_memory_growth(i, True) # tf.config.experimental.set_memory_growth(i, True)
def model(input_dim, output_dim, rnn_layers = 3, rnn_units = 72): def model(input_dim, output_dim, rnn_layers = 5, rnn_units = 128):
li = kl.Input((None, input_dim)) li = kl.Input((None, input_dim))
l1 = kl.Reshape((-1, input_dim, 1))(li) l1 = kl.Reshape((-1, input_dim, 1))(li)
@ -58,7 +58,7 @@ def model(input_dim, output_dim, rnn_layers = 3, rnn_units = 72):
lo = kl.Dense(output_dim + 1, activation = 'softmax')(lc2) lo = kl.Dense(output_dim + 1, activation = 'softmax')(lc2)
m = keras.Model(li, lo) m = keras.Model(li, lo)
m.compile(optimizer = ko.Lion(0.0004), m.compile(optimizer = ko.Adam(0.0001),
loss = CTCLoss) loss = CTCLoss)
return m return m

View File

@ -22,13 +22,13 @@ valid_ds = to_dataset(valid_data, batch_size = bs)
m = model(input_dim = fft_length // 2 + 1, m = model(input_dim = fft_length // 2 + 1,
output_dim = char_to_num.vocabulary_size()) output_dim = char_to_num.vocabulary_size())
m.load_weights('model23-latest.keras') m.load_weights('model40-latest.keras')
ckpt1 = kc.ModelCheckpoint('model24-latest.keras', ckpt1 = kc.ModelCheckpoint('model41-latest.keras',
monitor = 'val_loss', monitor = 'val_loss',
save_best_only = False, save_best_only = False,
verbose = 1) verbose = 1)
ckpt2 = kc.ModelCheckpoint('model24-best.keras', ckpt2 = kc.ModelCheckpoint('model41-best.keras',
monitor = 'val_loss', monitor = 'val_loss',
save_best_only = True, save_best_only = True,
verbose = 1) verbose = 1)
@ -36,6 +36,6 @@ ckpt2 = kc.ModelCheckpoint('model24-best.keras',
ce1 = ce(valid_ds, m) ce1 = ce(valid_ds, m)
m.fit(train_ds, m.fit(train_ds,
epochs = 80, epochs = 40,
validation_data = valid_ds, validation_data = valid_ds,
callbacks = [ckpt1, ckpt2, ce1]) callbacks = [ckpt1, ckpt2, ce1])