4
This commit is contained in:
parent
93229d32d1
commit
8665e3d475
35
detect.py
Normal file
35
detect.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
from model import m
|
||||||
|
from preprocessor import frs
|
||||||
|
import pickle
|
||||||
|
import time
|
||||||
|
|
||||||
|
from sys import exit
|
||||||
|
|
||||||
|
from tensorflow.keras.utils import pad_sequences as kps
|
||||||
|
|
||||||
|
m.load_weights("model2.keras")
|
||||||
|
tk = pickle.load(open('tokenizer.pickle', 'rb'))
|
||||||
|
|
||||||
|
while True:
|
||||||
|
t = ""
|
||||||
|
try:
|
||||||
|
t = frs(input("Comment: "))
|
||||||
|
except EOFError:
|
||||||
|
print("\nExiting")
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
print(f"Processed: {t}")
|
||||||
|
|
||||||
|
s = tk.texts_to_sequences([t])
|
||||||
|
print(f"Sequence: {s[0]}")
|
||||||
|
|
||||||
|
ps = kps(s, maxlen = 100)
|
||||||
|
|
||||||
|
p = m.predict(ps)
|
||||||
|
|
||||||
|
if p >= 0.75:
|
||||||
|
print(f"Result: positive ({p[0]})\n")
|
||||||
|
elif p <= 0.25:
|
||||||
|
print(f"Result: negative ({p[0]})\n")
|
||||||
|
else:
|
||||||
|
print(f"Result: unsure ({p[0]})\n")
|
||||||
8
main.py
8
main.py
@ -10,6 +10,9 @@ from tensorflow.keras.utils import pad_sequences as kps
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
|
||||||
print("I")
|
print("I")
|
||||||
t = pd.read_csv("prepped_train.csv",
|
t = pd.read_csv("prepped_train.csv",
|
||||||
header = None,
|
header = None,
|
||||||
@ -22,6 +25,9 @@ r = t['r'].astype(str)
|
|||||||
tk = kT(num_words = 6000)
|
tk = kT(num_words = 6000)
|
||||||
tk.fit_on_texts(r)
|
tk.fit_on_texts(r)
|
||||||
|
|
||||||
|
with open('tokenizer.pickle', 'wb') as f:
|
||||||
|
pickle.dump(tk, f, protocol = pickle.HIGHEST_PROTOCOL)
|
||||||
|
|
||||||
print("F")
|
print("F")
|
||||||
|
|
||||||
s = tk.texts_to_sequences(r)
|
s = tk.texts_to_sequences(r)
|
||||||
@ -50,6 +56,7 @@ m.compile(optimizer = ko.Lion(learning_rate = 0.0005),
|
|||||||
metrics = ['accuracy'])
|
metrics = ['accuracy'])
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
'''
|
||||||
from model import m
|
from model import m
|
||||||
|
|
||||||
ckpt = kc.ModelCheckpoint('model2.keras',
|
ckpt = kc.ModelCheckpoint('model2.keras',
|
||||||
@ -64,3 +71,4 @@ history = m.fit(ts,
|
|||||||
batch_size = 1024,
|
batch_size = 1024,
|
||||||
validation_split = 0.1,
|
validation_split = 0.1,
|
||||||
callbacks = [ckpt])
|
callbacks = [ckpt])
|
||||||
|
'''
|
||||||
|
|||||||
@ -5,9 +5,9 @@ from nltk.tokenize import word_tokenize
|
|||||||
from nltk.stem import WordNetLemmatizer
|
from nltk.stem import WordNetLemmatizer
|
||||||
from spellchecker import SpellChecker as sc
|
from spellchecker import SpellChecker as sc
|
||||||
|
|
||||||
nltk.download("stopwords")
|
#nltk.download("stopwords")
|
||||||
nltk.download("punkt_tab")
|
#nltk.download("punkt_tab")
|
||||||
nltk.download("wordnet")
|
#nltk.download("wordnet")
|
||||||
|
|
||||||
def fr(r):
|
def fr(r):
|
||||||
r = r.lower()
|
r = r.lower()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user