4
This commit is contained in:
parent
93229d32d1
commit
8665e3d475
35
detect.py
Normal file
35
detect.py
Normal file
@ -0,0 +1,35 @@
|
||||
from model import m
|
||||
from preprocessor import frs
|
||||
import pickle
|
||||
import time
|
||||
|
||||
from sys import exit
|
||||
|
||||
from tensorflow.keras.utils import pad_sequences as kps
|
||||
|
||||
m.load_weights("model2.keras")
|
||||
tk = pickle.load(open('tokenizer.pickle', 'rb'))
|
||||
|
||||
while True:
|
||||
t = ""
|
||||
try:
|
||||
t = frs(input("Comment: "))
|
||||
except EOFError:
|
||||
print("\nExiting")
|
||||
exit(0)
|
||||
|
||||
print(f"Processed: {t}")
|
||||
|
||||
s = tk.texts_to_sequences([t])
|
||||
print(f"Sequence: {s[0]}")
|
||||
|
||||
ps = kps(s, maxlen = 100)
|
||||
|
||||
p = m.predict(ps)
|
||||
|
||||
if p >= 0.75:
|
||||
print(f"Result: positive ({p[0]})\n")
|
||||
elif p <= 0.25:
|
||||
print(f"Result: negative ({p[0]})\n")
|
||||
else:
|
||||
print(f"Result: unsure ({p[0]})\n")
|
||||
8
main.py
8
main.py
@ -10,6 +10,9 @@ from tensorflow.keras.utils import pad_sequences as kps
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import pickle
|
||||
|
||||
|
||||
print("I")
|
||||
t = pd.read_csv("prepped_train.csv",
|
||||
header = None,
|
||||
@ -22,6 +25,9 @@ r = t['r'].astype(str)
|
||||
tk = kT(num_words = 6000)
|
||||
tk.fit_on_texts(r)
|
||||
|
||||
with open('tokenizer.pickle', 'wb') as f:
|
||||
pickle.dump(tk, f, protocol = pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
print("F")
|
||||
|
||||
s = tk.texts_to_sequences(r)
|
||||
@ -50,6 +56,7 @@ m.compile(optimizer = ko.Lion(learning_rate = 0.0005),
|
||||
metrics = ['accuracy'])
|
||||
'''
|
||||
|
||||
'''
|
||||
from model import m
|
||||
|
||||
ckpt = kc.ModelCheckpoint('model2.keras',
|
||||
@ -64,3 +71,4 @@ history = m.fit(ts,
|
||||
batch_size = 1024,
|
||||
validation_split = 0.1,
|
||||
callbacks = [ckpt])
|
||||
'''
|
||||
|
||||
@ -5,9 +5,9 @@ from nltk.tokenize import word_tokenize
|
||||
from nltk.stem import WordNetLemmatizer
|
||||
from spellchecker import SpellChecker as sc
|
||||
|
||||
nltk.download("stopwords")
|
||||
nltk.download("punkt_tab")
|
||||
nltk.download("wordnet")
|
||||
#nltk.download("stopwords")
|
||||
#nltk.download("punkt_tab")
|
||||
#nltk.download("wordnet")
|
||||
|
||||
def fr(r):
|
||||
r = r.lower()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user