22 lines
652 B
Python
22 lines
652 B
Python
|
|
from tensorflow.keras import layers as kl
|
||
|
|
from tensorflow.keras import models as km
|
||
|
|
from tensorflow.keras import losses as ks
|
||
|
|
from tensorflow.keras import optimizers as ko
|
||
|
|
from tensorflow.keras import callbacks as kc
|
||
|
|
|
||
|
|
m = km.Sequential([
|
||
|
|
kl.Input(shape = (None, ), dtype = 'int32'),
|
||
|
|
kl.Embedding(6000, 96),
|
||
|
|
kl.Dropout(0.2),
|
||
|
|
kl.Conv1D(128, 5, activation = 'relu'),
|
||
|
|
kl.LSTM(128, return_sequences = True),
|
||
|
|
kl.LSTM(64),
|
||
|
|
kl.Dense(64),
|
||
|
|
kl.Dropout(0.5),
|
||
|
|
kl.Dense(1, activation = 'sigmoid')
|
||
|
|
])
|
||
|
|
|
||
|
|
m.compile(optimizer = ko.Lion(learning_rate = 0.0005),
|
||
|
|
loss = 'binary_crossentropy',
|
||
|
|
metrics = ['accuracy'])
|