#from PIL import Image from sys import argv, exit import numpy as np import cv2 as cv from tensorflow.keras.utils import array_to_img as img from matplotlib import pyplot as plt if len(argv) != 2: exit(1) #i = np.array(Image.open(argv[1]).convert('RGB').resize((300,300))) from test2 import * m.load_weights("model3.keras") c = cv.VideoCapture(argv[1]) while True: ret, frame = c.read() if not ret: break pi = np.array(img(cv.cvtColor(frame, cv.COLOR_BGR2RGB)).resize((300, 300)).convert("RGB")) #plt.imshow(pi) #plt.show() #print(pi.astype(float)) r = m.predict(np.array([pi.astype(float)])) if r[0][0] >= 0.5: if (pi[30][30][0] >= 190): cv.putText(frame, f"Y: {r[0][0]:.9f}", (10, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0,40,0), 2) else: cv.putText(frame, f"Y: {r[0][0]:.9f}", (10, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (200,255,200), 2) else: if (pi[30][30][0] >= 190): cv.putText(frame, f"N: {r[0][0]:.9f}", (10, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0,40,0), 2) else: cv.putText(frame, f"N: {r[0][0]:.9f}", (10, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (200,255,200), 2) cv.imshow('me', frame) if cv.waitKey(1) == ord('q'): break #print(frame) c.release() cv.destroyAllWindows() #r = mod.predict(np.array([i])) #print(r)