from m import * from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score ds = tf.keras.preprocessing.image_dataset_from_directory( '../dataset-orig-aug-1-mini-1/', labels = 'inferred', label_mode = 'categorical', color_mode = 'rgb', image_size = (300, 300), batch_size = 32, verbose = True ) p = [] r = [] with open('results.txt', 'r') as f: for i in f.read().split('\n'): if i == '': continue res = tuple(map(float, i.split())) p.append([res[0] > 0.5, res[1] > 0.5]) r.append([res[2], res[3]]) print(f"Accuracy : {accuracy_score(p, r)}") print(f"Precision : {precision_score(p, r, average = 'micro')}") print(f"Recall : {recall_score(p, r, average = 'micro')}") print(f"F1 Score : {f1_score(p, r, average = 'micro')}")