import tensorflow as tf import numpy as np from tensorflow.keras import layers as kl from tensorflow.keras import models as km from tensorflow.keras import optimizers as ko def generate_inception_model(a = 5, b = 4, c = 2): # start i = kl.Input(shape = (300, 300, 3)) r1 = kl.Conv2D(1024, (3, 3), padding = 'same', activation = 'relu')(i) r2 = kl.Conv2D(1024, (5, 5), padding = 'same', activation = 'relu')(r1) r3 = kl.Conv2D(1024, (7, 7), padding = 'same', activation = 'relu')(r2) m1 = kl.MaxPooling2D((3, 3))(r3) r4 = kl.Conv2D(1024, (3, 3), padding = 'same', activation = 'relu')(m1) r5 = kl.Conv2D(1024, (5, 5), padding = 'same', activation = 'relu')(r4) ia0 = kl.MaxPooling2D((2, 2))(r5) # a types for k in range(a): exec(f"ia{k}_1_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})") exec(f"ia{k}_3_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})") exec(f"ia{k}_3_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_3_1)") exec(f"ia{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})") exec(f"ia{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_5_1)") exec(f"ia{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ia{k}_5_2)") exec(f"ia{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})") exec(f"ia{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_7_1)") exec(f"ia{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ia{k}_7_2)") exec(f"ia{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ia{k}_7_3)") exec(f"ia{k+1} = kl.Concatenate()([ia{k}_1_1, ia{k}_3_2, ia{k}_5_3, ia{k}_7_4])") # grid size reductor 1 iab_1 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(eval(f"ia{a}")) iab_2 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(eval(f"ia{a}")) iab_3 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(iab_2) iab_4 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_3) iab_6 = kl.Concatenate()([iab_1, iab_4, iab_5]) # b types for k in range(b): exec(f"ib{k}_1_1 = kl.MaxPooling2D((2, 2), padding = 'same')(iab_6)") exec(f"ib{k}_1_2 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i)") exec(f"ib{k}_3_1 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(iab_6)") exec(f"ib{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_6)") exec(f"ib{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_5_1)") exec(f"ib{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_5_2)") exec(f"ib{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_6)") exec(f"ib{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_7_1)") exec(f"ib{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_7_2)") exec(f"ib{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ib{k}_7_3)") exec(f"ib{k+1} = kl.Concatenate()([ib{k}_1_2, ib{k}_3_2, ib{k}_5_3, ib{k}_7_4])") # grid size reductor 2 # c types for k in range(c): exec(f"ic{k}_1_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})") exec(f"ic{k}_3_1 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})") exec(f"ic{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})") exec(f"ic{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_5_1)") exec(f"ic{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_5_2)") exec(f"ic{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})") exec(f"ic{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_7_1)") exec(f"ic{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_7_2)") exec(f"ic{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ib{k}_7_3)") exec(f"ib{k+1} = kl.Concatenate()([ib{k}_1_1, ib{k}_3_2, ib{k}_5_3, ib{k}_7_4])") # mppt o = eval(f"ic{c}") return tf.keras.Model(inputs = i, outputs = o) ''' a_i = l.Input(shape = (300, 300, 3)) a_1_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i) a_3_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i) a_3_2 = l.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(a_3_1) a_5_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i) a_5_2 = l.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(a_5_1) a_7_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i) a_7_2 = l.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(a_7_1) a_o = l.Concatenate()([a_1_1, a_3_2, a_5_2, a_7_2]) inception_type_a = [a_i, a_o] tf.keras.Model(*inception_type_a) ''' mod = generate_inception_model() mod.summary() mod.compile(optimizer = ko.Lion(learning_rate = 0.001))