import tensorflow as tf ds_train, ds_valid = tf.keras.preprocessing.image_dataset_from_directory( '/mnt/tmpfs1/ds-mini-1', labels = 'inferred', label_mode = 'categorical', color_mode = 'rgb', batch_size = 16, image_size = (300, 300), shuffle = False, validation_split = 0.05, subset = 'both', verbose = True ) from m import * ckpt = kc.ModelCheckpoint("model3.model.keras", monitor = 'val_accuracy', save_best_only = True) h = mod.fit(ds_train, epochs = 9, validation_data = ds_valid, callbacks = [ckpt])