diff --git a/m.py b/m.py index 7b41960..3628340 100644 --- a/m.py +++ b/m.py @@ -17,10 +17,10 @@ def conv(i, n, s, t = (1, 1)): return kl.Activation('relu')(b) def avg(i, s): - return kl.AveragePooling2D(s, padding = 'same')(i) + return kl.AveragePooling2D(s, padding = 'same', strides = (1, 1))(i) def max(i, s): - return kl.MaxPooling2D(s, padding = 'same')(i) + return kl.MaxPooling2D(s, padding = 'same', strides = (1, 1))(i) def generate_start(i): r1 = conv(i, CONV_SIZE, (3, 3)) @@ -113,7 +113,7 @@ def generate_type_c(i): c31 = max(i, (3, 3)) c32 = conv(c31, CONV_SIZE, (1, 1)) - c41 = conv(i, CONV_SIZE, (1, 1)) + c41 = conv(i, CONV_SIZE, (1, 1), (3, 3)) return kl.Concatenate()([c14, c23, c32, c41]) @@ -127,23 +127,23 @@ def generate_finish(i): return kl.Dense(TOUT_AMNT)(f5) -gi = kl.Input((300, 300, 3)) +gi = kl.Input((2048, 2048, 3)) ds = generate_start(gi) -for _ in range(5): +for _ in range(1): ds = generate_type_a(ds) ds = generate_ab_bridge(ds) -for _ in range(4): +for _ in range(1): ds = generate_type_b(ds) uo = generate_aux(ds) go = generate_bc_bridge(ds) -for _ in range(2): +for _ in range(1): go = generate_type_c(go) go = generate_finish(go) @@ -151,4 +151,4 @@ go = generate_finish(go) mod = k.Model(inputs = gi, outputs = [go, uo]) mod.summary() -mod.compile(optimizer = ko.Lion(learning_rate = 0.001)) +mod.compile(optimizer = ko.Lion(learning_rate = 0.001), metrics = ['accuracy', 'val_accuracy'])