updates from colab [fix model, reduce augmentation]
This commit is contained in:
parent
4285df1657
commit
0f4ebce8f6
7
aug.py
7
aug.py
@ -4,6 +4,7 @@ from PIL import Image
|
|||||||
from os import listdir as ls
|
from os import listdir as ls
|
||||||
from sys import argv, exit
|
from sys import argv, exit
|
||||||
from tensorflow.keras.utils import array_to_img as img
|
from tensorflow.keras.utils import array_to_img as img
|
||||||
|
from tensorflow.keras import layers as kl
|
||||||
|
|
||||||
if len(argv) != 3:
|
if len(argv) != 3:
|
||||||
exit(1)
|
exit(1)
|
||||||
@ -14,11 +15,11 @@ for v, fn in enumerate(files):
|
|||||||
i = np.array(Image.open(f"{argv[1]}/{fn}").convert('RGB').resize((300,300))) / 255.0
|
i = np.array(Image.open(f"{argv[1]}/{fn}").convert('RGB').resize((300,300))) / 255.0
|
||||||
print(f"Processing {v+1:03d}/{len(files)}: {fn}")
|
print(f"Processing {v+1:03d}/{len(files)}: {fn}")
|
||||||
|
|
||||||
for x1 in range(4):
|
for x1 in range(3):
|
||||||
i1 = tf.image.random_brightness(i, 0.6)
|
i1 = tf.image.random_brightness(i, 0.6)
|
||||||
for x2 in range(4):
|
for x2 in range(3):
|
||||||
i2 = tf.image.random_saturation(i1, 0.1, 2.0)
|
i2 = tf.image.random_saturation(i1, 0.1, 2.0)
|
||||||
for x3 in range(4):
|
for x3 in range(3):
|
||||||
i3 = tf.image.random_contrast(i2, 0.2, 1.9)
|
i3 = tf.image.random_contrast(i2, 0.2, 1.9)
|
||||||
img(i3).save(f"{argv[2]}/{fn.rsplit('.', 1)[0]}_{x1}_{x2}_{x3}_1.png")
|
img(i3).save(f"{argv[2]}/{fn.rsplit('.', 1)[0]}_{x1}_{x2}_{x3}_1.png")
|
||||||
|
|
||||||
|
|||||||
16
m.py
16
m.py
@ -5,9 +5,10 @@ from tensorflow import keras as k
|
|||||||
from tensorflow.keras import layers as kl
|
from tensorflow.keras import layers as kl
|
||||||
from tensorflow.keras import models as km
|
from tensorflow.keras import models as km
|
||||||
from tensorflow.keras import optimizers as ko
|
from tensorflow.keras import optimizers as ko
|
||||||
|
from tensorflow.keras import callbacks as kc
|
||||||
|
|
||||||
CONV_SIZE = 128
|
CONV_SIZE = 96
|
||||||
MPPT_SIZE = 1024
|
MPPT_SIZE = 256
|
||||||
DRPT_RATE = 0.3
|
DRPT_RATE = 0.3
|
||||||
TOUT_AMNT = 2
|
TOUT_AMNT = 2
|
||||||
|
|
||||||
@ -23,7 +24,8 @@ def max(i, s):
|
|||||||
return kl.MaxPooling2D(s, padding = 'same', strides = (1, 1))(i)
|
return kl.MaxPooling2D(s, padding = 'same', strides = (1, 1))(i)
|
||||||
|
|
||||||
def generate_start(i):
|
def generate_start(i):
|
||||||
r1 = conv(i, CONV_SIZE, (3, 3))
|
s = kl.Rescaling(1./255.)(i)
|
||||||
|
r1 = conv(s, CONV_SIZE, (3, 3))
|
||||||
r2 = conv(r1, CONV_SIZE, (3, 3))
|
r2 = conv(r1, CONV_SIZE, (3, 3))
|
||||||
r3 = conv(r2, CONV_SIZE, (3, 3))
|
r3 = conv(r2, CONV_SIZE, (3, 3))
|
||||||
|
|
||||||
@ -133,19 +135,19 @@ gi = kl.Input((300, 300, 3))
|
|||||||
|
|
||||||
ds = generate_start(gi)
|
ds = generate_start(gi)
|
||||||
|
|
||||||
for _ in range(1):
|
for _ in range(3):
|
||||||
ds = generate_type_a(ds)
|
ds = generate_type_a(ds)
|
||||||
|
|
||||||
ds = generate_ab_bridge(ds)
|
ds = generate_ab_bridge(ds)
|
||||||
|
|
||||||
for _ in range(1):
|
for _ in range(4):
|
||||||
ds = generate_type_b(ds)
|
ds = generate_type_b(ds)
|
||||||
|
|
||||||
uo = generate_aux(ds)
|
uo = generate_aux(ds)
|
||||||
|
|
||||||
go = generate_bc_bridge(ds)
|
go = generate_bc_bridge(ds)
|
||||||
|
|
||||||
for _ in range(1):
|
for _ in range(2):
|
||||||
go = generate_type_c(go)
|
go = generate_type_c(go)
|
||||||
|
|
||||||
go = generate_finish(go)
|
go = generate_finish(go)
|
||||||
@ -153,6 +155,6 @@ go = generate_finish(go)
|
|||||||
mod = k.Model(inputs = gi, outputs = go)
|
mod = k.Model(inputs = gi, outputs = go)
|
||||||
|
|
||||||
mod.summary()
|
mod.summary()
|
||||||
mod.compile(optimizer = ko.Lion(learning_rate = 0.001),
|
mod.compile(optimizer = ko.Lion(learning_rate = 0.0001),
|
||||||
loss = 'categorical_crossentropy',
|
loss = 'categorical_crossentropy',
|
||||||
metrics = ['accuracy'])
|
metrics = ['accuracy'])
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user