117 lines
5.4 KiB
Python
117 lines
5.4 KiB
Python
|
|
import tensorflow as tf
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
from tensorflow.keras import layers as kl
|
||
|
|
from tensorflow.keras import models as km
|
||
|
|
from tensorflow.keras import optimizers as ko
|
||
|
|
|
||
|
|
def generate_inception_model(a = 5, b = 4, c = 2):
|
||
|
|
# start
|
||
|
|
i = kl.Input(shape = (300, 300, 3))
|
||
|
|
|
||
|
|
r1 = kl.Conv2D(1024, (3, 3), padding = 'same', activation = 'relu')(i)
|
||
|
|
r2 = kl.Conv2D(1024, (5, 5), padding = 'same', activation = 'relu')(r1)
|
||
|
|
r3 = kl.Conv2D(1024, (7, 7), padding = 'same', activation = 'relu')(r2)
|
||
|
|
|
||
|
|
m1 = kl.MaxPooling2D((3, 3))(r3)
|
||
|
|
|
||
|
|
r4 = kl.Conv2D(1024, (3, 3), padding = 'same', activation = 'relu')(m1)
|
||
|
|
r5 = kl.Conv2D(1024, (5, 5), padding = 'same', activation = 'relu')(r4)
|
||
|
|
|
||
|
|
ia0 = kl.MaxPooling2D((2, 2))(r5)
|
||
|
|
|
||
|
|
# a types
|
||
|
|
for k in range(a):
|
||
|
|
exec(f"ia{k}_1_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})")
|
||
|
|
|
||
|
|
exec(f"ia{k}_3_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})")
|
||
|
|
exec(f"ia{k}_3_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_3_1)")
|
||
|
|
|
||
|
|
exec(f"ia{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})")
|
||
|
|
exec(f"ia{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_5_1)")
|
||
|
|
exec(f"ia{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ia{k}_5_2)")
|
||
|
|
|
||
|
|
exec(f"ia{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(ia{k})")
|
||
|
|
exec(f"ia{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ia{k}_7_1)")
|
||
|
|
exec(f"ia{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ia{k}_7_2)")
|
||
|
|
exec(f"ia{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ia{k}_7_3)")
|
||
|
|
|
||
|
|
exec(f"ia{k+1} = kl.Concatenate()([ia{k}_1_1, ia{k}_3_2, ia{k}_5_3, ia{k}_7_4])")
|
||
|
|
|
||
|
|
# grid size reductor 1
|
||
|
|
iab_1 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(eval(f"ia{a}"))
|
||
|
|
|
||
|
|
iab_2 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(eval(f"ia{a}"))
|
||
|
|
iab_3 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(iab_2)
|
||
|
|
iab_4 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_3)
|
||
|
|
|
||
|
|
iab_6 = kl.Concatenate()([iab_1, iab_4, iab_5])
|
||
|
|
|
||
|
|
# b types
|
||
|
|
for k in range(b):
|
||
|
|
exec(f"ib{k}_1_1 = kl.MaxPooling2D((2, 2), padding = 'same')(iab_6)")
|
||
|
|
exec(f"ib{k}_1_2 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i)")
|
||
|
|
|
||
|
|
exec(f"ib{k}_3_1 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(iab_6)")
|
||
|
|
|
||
|
|
exec(f"ib{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_6)")
|
||
|
|
exec(f"ib{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_5_1)")
|
||
|
|
exec(f"ib{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_5_2)")
|
||
|
|
|
||
|
|
exec(f"ib{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(iab_6)")
|
||
|
|
exec(f"ib{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_7_1)")
|
||
|
|
exec(f"ib{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_7_2)")
|
||
|
|
exec(f"ib{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ib{k}_7_3)")
|
||
|
|
|
||
|
|
exec(f"ib{k+1} = kl.Concatenate()([ib{k}_1_2, ib{k}_3_2, ib{k}_5_3, ib{k}_7_4])")
|
||
|
|
|
||
|
|
# grid size reductor 2
|
||
|
|
|
||
|
|
# c types
|
||
|
|
for k in range(c):
|
||
|
|
exec(f"ic{k}_1_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})")
|
||
|
|
|
||
|
|
exec(f"ic{k}_3_1 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})")
|
||
|
|
|
||
|
|
exec(f"ic{k}_5_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})")
|
||
|
|
exec(f"ic{k}_5_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_5_1)")
|
||
|
|
exec(f"ic{k}_5_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_5_2)")
|
||
|
|
|
||
|
|
exec(f"ic{k}_7_1 = kl.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(i{'b' if k else 'a'}{k if k else a})")
|
||
|
|
exec(f"ic{k}_7_2 = kl.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(ib{k}_7_1)")
|
||
|
|
exec(f"ic{k}_7_3 = kl.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(ib{k}_7_2)")
|
||
|
|
exec(f"ic{k}_7_4 = kl.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(ib{k}_7_3)")
|
||
|
|
|
||
|
|
exec(f"ib{k+1} = kl.Concatenate()([ib{k}_1_1, ib{k}_3_2, ib{k}_5_3, ib{k}_7_4])")
|
||
|
|
|
||
|
|
# mppt
|
||
|
|
|
||
|
|
o = eval(f"ic{c}")
|
||
|
|
return tf.keras.Model(inputs = i, outputs = o)
|
||
|
|
|
||
|
|
|
||
|
|
'''
|
||
|
|
a_i = l.Input(shape = (300, 300, 3))
|
||
|
|
|
||
|
|
a_1_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i)
|
||
|
|
|
||
|
|
a_3_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i)
|
||
|
|
a_3_2 = l.Conv2D(1024, (3, 1), padding = 'same', activation = 'relu')(a_3_1)
|
||
|
|
|
||
|
|
a_5_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i)
|
||
|
|
a_5_2 = l.Conv2D(1024, (5, 1), padding = 'same', activation = 'relu')(a_5_1)
|
||
|
|
|
||
|
|
a_7_1 = l.Conv2D(1024, (1, 1), padding = 'same', activation = 'relu')(a_i)
|
||
|
|
a_7_2 = l.Conv2D(1024, (7, 1), padding = 'same', activation = 'relu')(a_7_1)
|
||
|
|
|
||
|
|
a_o = l.Concatenate()([a_1_1, a_3_2, a_5_2, a_7_2])
|
||
|
|
|
||
|
|
inception_type_a = [a_i, a_o]
|
||
|
|
|
||
|
|
tf.keras.Model(*inception_type_a)
|
||
|
|
'''
|
||
|
|
|
||
|
|
mod = generate_inception_model()
|
||
|
|
mod.summary()
|
||
|
|
mod.compile(optimizer = ko.Lion(learning_rate = 0.001))
|