1
0
neuro-lab4/test1.py
2025-10-16 13:25:58 +03:00

63 lines
1.8 KiB
Python

#!/usr/bin/python3
from tensorflow.keras.preprocessing.image import ImageDataGenerator
img_size = (227, 227)
batch_size = 128
extract_path="../ds/raw-img"
datagen = ImageDataGenerator(
rescale=1.0/255,
validation_split=0.2
)
def __dg(subset):
return datagen.flow_from_directory(extract_path,
target_size = img_size,
batch_size = batch_size,
class_mode = "categorical",
subset = subset,
shuffle = True)
train_generator = __dg("training")
val_generator = __dg("validation")
from tensorflow.keras import models as m
from tensorflow.keras import layers as l
from tensorflow.keras import optimizers as o
model = m.Sequential([
l.Input(shape=(227, 227, 3)),
l.Conv2D(96, (11, 11), strides=4, activation='relu'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(256, (5, 5), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(384, (3, 3), activation='relu', padding='same'),
l.Conv2D(384, (3, 3), activation='relu', padding='same'),
l.Conv2D(256, (3, 3), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Flatten(),
l.Dense(4096, activation='relu'),
l.Dropout(0.5),
l.Dense(4096, activation='relu'),
l.Dropout(0.5),
l.Dense(10, activation='softmax'),
])
model.compile(optimizer = o.Adam(learning_rate = 0.0001),
loss = 'categorical_crossentropy',
metrics = ['accuracy'])
print(model.summary())
model.fit(train_generator,
epochs = 3,
validation_data = val_generator)
model.save_weights("w1.weights.h5")