1
0
neuro-lab4/find2.py

55 lines
1.6 KiB
Python

#!/usr/bin/python3
img_size = (150, 150)
from tensorflow.keras import models as m
from tensorflow.keras import layers as l
from tensorflow.keras import optimizers as o
from PIL import Image
from sys import argv
from os import listdir as ls
import numpy as np
model = m.Sequential([
l.Input(shape = (*img_size, 3)),
l.Conv2D(96, (11, 11), strides = 4, activation = "relu"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Conv2D(192, (5, 5), activation = "relu", padding = "same"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Conv2D(256, (3, 3), activation = "relu", padding = "same"),
l.Conv2D(256, (3, 3), activation = "relu", padding = "same"),
l.Conv2D(160, (3, 3), activation = "relu", padding = "same"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Flatten(),
l.Dense(1024, activation = "relu"),
l.Dropout(0.5),
l.Dense(1024, activation = "relu"),
l.Dropout(0.5),
l.Dense(10, activation = "softmax"),
])
model.compile(optimizer = o.Adam(learning_rate = 0.0001),
loss = "categorical_crossentropy",
metrics = ["accuracy"])
model.load_weights("ep20.weights.h5")
if len(argv) >= 2:
for i in argv[1:]:
with Image.open(i) as im:
im = im.resize((150, 150), Image.Resampling.LANCZOS)
im = np.divide(np.array(im),
np.array(255.))
res = model.predict(np.array([im]))
print(res)
print(np.argmax(res))
print(sorted(ls("../ds/raw-img"))[np.argmax(res)])