diff --git a/analize2.py b/analize2.py new file mode 100644 index 0000000..42b7fc5 --- /dev/null +++ b/analize2.py @@ -0,0 +1,59 @@ +#!/usr/bin/python3 + +from tensorflow.keras.preprocessing.image import ImageDataGenerator + +img_size = (150, 150) +batch_size = 128 +extract_path="../ds/raw-img" + +datagen = ImageDataGenerator( + rescale=1.0/255, + validation_split=0.2 +) + +def __dg(subset): + return datagen.flow_from_directory(extract_path, + target_size = img_size, + batch_size = batch_size, + class_mode = "categorical", + subset = subset, + shuffle = True) + +train_generator = __dg("training") +val_generator = __dg("validation") + + +from tensorflow.keras import models as m +from tensorflow.keras import layers as l +from tensorflow.keras import optimizers as o + +model = m.Sequential([ + l.Input(shape=(150, 150, 3)), + l.Conv2D(96, (11, 11), strides=4, activation='relu'), + l.BatchNormalization(), + l.MaxPooling2D((3, 3), strides=2), + + l.Conv2D(192, (5, 5), activation='relu', padding='same'), + l.BatchNormalization(), + l.MaxPooling2D((3, 3), strides=2), + l.Conv2D(256, (3, 3), activation='relu', padding='same'), + l.Conv2D(256, (3, 3), activation='relu', padding='same'), + l.Conv2D(160, (3, 3), activation='relu', padding='same'), + l.BatchNormalization(), + l.MaxPooling2D((3, 3), strides=2), + l.Flatten(), + l.Dense(1024, activation='relu'), + l.Dropout(0.5), + l.Dense(1024, activation='relu'), + l.Dropout(0.5), + l.Dense(10, activation='softmax'), +]) + +model.compile(optimizer = o.Adam(learning_rate = 0.0001), + loss = 'categorical_crossentropy', + metrics = ['accuracy']) + +model.load_weights("w2.weights.h5") + +l, a = model.evaluate(val_generator) +print(f"Loss: {l} Accuracy: {a}") diff --git a/find2.py b/find2.py index 73f0af1..f81c1bc 100644 --- a/find2.py +++ b/find2.py @@ -39,7 +39,7 @@ model.compile(optimizer = o.Adam(learning_rate = 0.0001), loss = "categorical_crossentropy", metrics = ["accuracy"]) -model.load_weights("w2.weights.h5") +model.load_weights("ep20.weights.h5") if len(argv) >= 2: for i in argv[1:]: diff --git a/test2.py b/test2.py index 9b5b4a5..9486bc1 100644 --- a/test2.py +++ b/test2.py @@ -3,7 +3,7 @@ from tensorflow.keras.preprocessing.image import ImageDataGenerator img_size = (150, 150) -batch_size = 128 +batch_size = 192 extract_path="../ds/raw-img" datagen = ImageDataGenerator(