1
0

initial commit

This commit is contained in:
ІО-23 Шмуляр Олег 2025-10-16 13:25:58 +03:00
commit 6f93c696fd
3 changed files with 180 additions and 0 deletions

54
find2.py Normal file
View File

@ -0,0 +1,54 @@
#!/usr/bin/python3
img_size = (150, 150)
from tensorflow.keras import models as m
from tensorflow.keras import layers as l
from tensorflow.keras import optimizers as o
from PIL import Image
from sys import argv
from os import listdir as ls
import numpy as np
model = m.Sequential([
l.Input(shape = (*img_size, 3)),
l.Conv2D(96, (11, 11), strides = 4, activation = "relu"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Conv2D(192, (5, 5), activation = "relu", padding = "same"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Conv2D(256, (3, 3), activation = "relu", padding = "same"),
l.Conv2D(256, (3, 3), activation = "relu", padding = "same"),
l.Conv2D(160, (3, 3), activation = "relu", padding = "same"),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides = 2),
l.Flatten(),
l.Dense(1024, activation = "relu"),
l.Dropout(0.5),
l.Dense(1024, activation = "relu"),
l.Dropout(0.5),
l.Dense(10, activation = "softmax"),
])
model.compile(optimizer = o.Adam(learning_rate = 0.0001),
loss = "categorical_crossentropy",
metrics = ["accuracy"])
model.load_weights("w2.weights.h5")
if len(argv) >= 2:
for i in argv[1:]:
with Image.open(i) as im:
im = im.resize((150, 150), Image.Resampling.LANCZOS)
im = np.divide(np.array(im),
np.array(255.))
res = model.predict(np.array([im]))
print(res)
print(np.argmax(res))
print(sorted(ls("../ds/raw-img"))[np.argmax(res)])

62
test1.py Normal file
View File

@ -0,0 +1,62 @@
#!/usr/bin/python3
from tensorflow.keras.preprocessing.image import ImageDataGenerator
img_size = (227, 227)
batch_size = 128
extract_path="../ds/raw-img"
datagen = ImageDataGenerator(
rescale=1.0/255,
validation_split=0.2
)
def __dg(subset):
return datagen.flow_from_directory(extract_path,
target_size = img_size,
batch_size = batch_size,
class_mode = "categorical",
subset = subset,
shuffle = True)
train_generator = __dg("training")
val_generator = __dg("validation")
from tensorflow.keras import models as m
from tensorflow.keras import layers as l
from tensorflow.keras import optimizers as o
model = m.Sequential([
l.Input(shape=(227, 227, 3)),
l.Conv2D(96, (11, 11), strides=4, activation='relu'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(256, (5, 5), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(384, (3, 3), activation='relu', padding='same'),
l.Conv2D(384, (3, 3), activation='relu', padding='same'),
l.Conv2D(256, (3, 3), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Flatten(),
l.Dense(4096, activation='relu'),
l.Dropout(0.5),
l.Dense(4096, activation='relu'),
l.Dropout(0.5),
l.Dense(10, activation='softmax'),
])
model.compile(optimizer = o.Adam(learning_rate = 0.0001),
loss = 'categorical_crossentropy',
metrics = ['accuracy'])
print(model.summary())
model.fit(train_generator,
epochs = 3,
validation_data = val_generator)
model.save_weights("w1.weights.h5")

64
test2.py Normal file
View File

@ -0,0 +1,64 @@
#!/usr/bin/python3
from tensorflow.keras.preprocessing.image import ImageDataGenerator
img_size = (150, 150)
batch_size = 128
extract_path="../ds/raw-img"
datagen = ImageDataGenerator(
rescale=1.0/255,
validation_split=0.2
)
def __dg(subset):
return datagen.flow_from_directory(extract_path,
target_size = img_size,
batch_size = batch_size,
class_mode = "categorical",
subset = subset,
shuffle = True)
train_generator = __dg("training")
val_generator = __dg("validation")
from tensorflow.keras import models as m
from tensorflow.keras import layers as l
from tensorflow.keras import optimizers as o
model = m.Sequential([
l.Input(shape=(150, 150, 3)),
l.Conv2D(96, (11, 11), strides=4, activation='relu'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(192, (5, 5), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Conv2D(256, (3, 3), activation='relu', padding='same'),
l.Conv2D(256, (3, 3), activation='relu', padding='same'),
l.Conv2D(160, (3, 3), activation='relu', padding='same'),
l.BatchNormalization(),
l.MaxPooling2D((3, 3), strides=2),
l.Flatten(),
l.Dense(1024, activation='relu'),
l.Dropout(0.5),
l.Dense(1024, activation='relu'),
l.Dropout(0.5),
l.Dense(10, activation='softmax'),
])
model.compile(optimizer = o.Adam(learning_rate = 0.0001),
loss = 'categorical_crossentropy',
metrics = ['accuracy'])
print(model.summary())
model.load_weights("w2.weights.h5")
model.fit(train_generator,
epochs = 10,
validation_data = val_generator)
model.save_weights("w2.weights.h5")