neuro-lab3/f.py

159 lines
3.6 KiB
Python

import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image, ImageTk
def __prep_data():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255.
x_test = x_test.astype("float32") / 255.
x_train = x_train.reshape(-1, 784)
x_test = x_test.reshape(-1, 784)
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
return (x_train, y_train), (x_test, y_test)
def __prep_conf_matr(m):
output_matrix = np.zeros([10, 10])
(_, _), (x_test, y_test) = __prep_data()
pred = m.predict(x_test)
for i, v in enumerate(pred):
output_matrix[np.argmax(v)][np.argmax(y_test[i])] += 1
return output_matrix
def __plot_conf_matr(m):
matr = __prep_conf_matr(m)
_, ax = plt.subplots()
ax.matshow(matr, cmap = plt.cm.Blues)
for i, x in enumerate(matr):
for j, y in enumerate(x):
ax.text(i,
j,
str(round(y)),
va = "center",
ha = "center")
plt.show()
def __conf_matr_to_binary(index, matr):
bm = np.zeros([2, 2])
for i, x in enumerate(matr):
for j, y in enumerate(x):
bm[int(index != i), int(index != j)] += y
return bm
def __calc_accuracy_for(index, bcm):
return (bcm[0,0] + bcm[1,1]) / (bcm[0,0] + bcm[0,1] + bcm[1,0] + bcm[1,1])
def __calc_precision_for(index, bcm):
return (bcm[0,0]) / (bcm[0,0] + bcm[0,1])
def __calc_recall_for(index, bcm):
return (bcm[0,0]) / (bcm[0,0] + bcm[1,0])
def __calc_specificity_for(index, bcm):
return (bcm[1,1]) / (bcm[0,1] + bcm[1,1])
def __calc_f1_score_for(index, bcm):
p = __calc_precision_for(index, bcm)
r = __calc_recall_for(index, bcm)
return 2 * p * r / (p + r)
def __plot_acc_rate(h):
plt.plot(h.history['accuracy'], label = 'train_acc')
plt.plot(h.history['val_accuracy'], label = 'valid_acc')
plt.legend()
plt.show()
def train(m, label):
(x_train, y_train), (x_test, y_test) = __prep_data()
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
h = m.fit(x_train,
y_train,
epochs = 30,
batch_size = 512,
validation_data = (x_test, y_test))
m.save_weights(f"save-{label}.weights.h5")
__plot_acc_rate(h)
def model_quality(m, label):
(_, _), (x_test, y_test) = __prep_data()
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
m.load_weights(f"save-{label}.weights.h5")
__plot_conf_matr(m)
cm = __prep_conf_matr(m)
for i in range(10):
bcm = __conf_matr_to_binary(i, cm)
acc = __calc_accuracy_for(i, bcm)
pre = __calc_precision_for(i, bcm)
rec = __calc_recall_for(i, bcm)
f1s = __calc_f1_score_for(i, bcm)
spe = __calc_specificity_for(i, bcm)
print(f"{i}: acc={acc} pre={pre} rec={rec} f1s={f1s} spe={spe}")
def classify(m, label, imgfn):
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
m.load_weights(f"save-{label}.weights.h5")
img = Image.open(imgfn).convert("L")
flat_img = np.array(img).reshape(-1, 784)
res = m.predict(flat_img)
plt.imshow(flat_img.reshape(28, 28),
cmap = "gray")
plt.title(np.argmax(res))
plt.show()
def classify_live(m, label):
import lv
lv.classify_live(m, label)