initial commit

This commit is contained in:
ІО-23 Шмуляр Олег 2025-10-11 21:57:26 +03:00
commit a5c85e5060
5 changed files with 263 additions and 0 deletions

103
f.py Normal file
View File

@ -0,0 +1,103 @@
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image, ImageTk
def __prep_data():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255.
x_test = x_test.astype("float32") / 255.
x_train = x_train.reshape(-1, 784)
x_test = x_test.reshape(-1, 784)
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
return (x_train, y_train), (x_test, y_test)
def __prep_conf_matr(m):
output_matrix = np.zeros([10, 10])
(_, _), (x_test, y_test) = __prep_data()
pred = m.predict(x_test)
for i, v in enumerate(pred):
output_matrix[np.argmax(v)][np.argmax(y_test[i])] += 1
return output_matrix
def __plot_conf_matr(m):
matr = __prep_conf_matr(m)
_, ax = plt.subplots()
ax.matshow(matr, cmap = plt.cm.Blues)
for i, x in enumerate(matr):
for j, y in enumerate(x):
ax.text(i,
j,
str(round(y)),
va = "center",
ha = "center")
plt.show()
def __plot_acc_rate(h):
plt.plot(h.history['accuracy'], label = 'train_acc')
plt.plot(h.history['val_accuracy'], label = 'valid_acc')
plt.legend()
plt.show()
def train(m, label):
(x_train, y_train), (x_test, y_test) = __prep_data()
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
h = m.fit(x_train,
y_train,
epochs = 30,
batch_size = 512,
validation_data = (x_test, y_test))
m.save_weights(f"save-{label}.weights.h5")
__plot_acc_rate(h)
__plot_conf_matr(m)
def classify(m, label, imgfn):
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
m.load_weights(f"save-{label}.weights.h5")
img = Image.open(imgfn).convert("L")
flat_img = np.array(img).reshape(-1, 784)
res = m.predict(flat_img)
plt.imshow(flat_img.reshape(28, 28),
cmap = "gray")
plt.title(np.argmax(res))
plt.show()
put_active = 0
take_active = 0
def classify_live(m, label):
import lv
lv.classify_live(m, label)

102
lv.py Normal file
View File

@ -0,0 +1,102 @@
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image, ImageTk
import tkinter as tk
import math
import time
__put_active = 0
__take_active = 0
__img = None
__cw = None
def classify_live(m, label):
global __img, __cw
m.compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = ["accuracy"])
m.load_weights(f"save-{label}.weights.h5")
r = tk.Tk()
r.title("Draw!")
canvas = np.zeros([28, 28])
__img = Image.fromarray(np.uint8(canvas * 255), "L")
__cw = ImageTk.PhotoImage(
__img.resize(size = (504, 504),
resample = Image.NEAREST))
l = tk.Label(r, image = __cw)
lt = tk.Label(r, text = "", font = ("Liberation Sans", 48))
lt.pack()
l.pack()
def clear_array():
canvas[:][:] = np.zeros([28, 28])
def mouse_down(ev):
global __put_active, __take_active
if ev.num == 1:
__put_active = 1
elif ev.num == 2:
__take_active = 1
def mouse_up(ev):
global __put_active, __take_active
if ev.num == 1:
__put_active = 0
elif ev.num == 2:
__take_active = 0
def update_img():
global __img, __cw
__img = Image.fromarray(np.uint8(canvas * 255), "L")
__cw = ImageTk.PhotoImage(
__img.resize(size = (504, 504),
resample = Image.NEAREST))
l.configure(image = __cw)
r.after(50, update_img)
def update_pred():
pred = m.predict(canvas.reshape(-1, 784),
verbose = 0)
lt.configure(text = np.argmax(pred))
r.after(300, update_pred)
def change_pix(ev):
x = math.floor(ev.x / 18)
y = math.floor(ev.y / 18)
if __put_active:
canvas[y, x] = 1
elif __take_active:
canvas[x, y] = 0
l.bind("<Motion>", change_pix)
l.bind("<ButtonPress>", mouse_down)
l.bind("<ButtonRelease>", mouse_up)
tk.Button(text = "Clear",
command = clear_array).pack()
r.after(300, update_pred)
r.after(50, update_img)
r.mainloop()

19
nn1.py Normal file
View File

@ -0,0 +1,19 @@
import tensorflow as tf
import tensorflow.keras.layers as l
from sys import argv
import f
m = tf.keras.models.Sequential([
l.Input(shape = (784,)),
l.Dense(128, activation = "relu"),
l.Dense(64, activation = "relu"),
l.Dense(10, activation = "softmax")
])
#f.train(m, "1")
if len(argv) == 2:
f.classify(m, "1", argv[1])
else:
f.classify_live(m, "1")

19
nn2.py Normal file
View File

@ -0,0 +1,19 @@
import tensorflow as tf
import tensorflow.keras.layers as l
from sys import argv
import f
m = tf.keras.models.Sequential([
l.Input(shape = (784,)),
l.Dense(64, activation = "relu"),
l.Dense(20, activation = "relu"),
l.Dense(10, activation = "softmax")
])
#f.train(m, "2")
if len(argv) == 2:
f.classify(m, "2", argv[1])
else:
f.classify_live(m, "2")

20
nn3.py Normal file
View File

@ -0,0 +1,20 @@
import tensorflow as tf
import tensorflow.keras.layers as l
from sys import argv
import f
m = tf.keras.models.Sequential([
l.Input(shape = (784,)),
l.Dense(4096, activation = "relu"),
l.Dense(4096, activation = "relu"),
l.Dense(4096, activation = "relu"),
l.Dense(10, activation = "softmax")
])
#f.train(m, "3")
if len(argv) == 2:
f.classify(m, "3", argv[1])
else:
f.classify_live(m, "3")