import tensorflow as tf import tensorflow.keras.layers as l import generic as g m = tf.keras.models.Sequential([ l.Input(shape = (2, 1)), l.SimpleRNN(100, activation = "relu", return_sequences = True), l.SimpleRNN(100, activation = "relu", return_sequences = True), l.SimpleRNN(100, activation = "relu"), l.Dense(1) ]) #i = l.Input(shape = (2,)) #h1 = l.SimpleRNN(10, activation = "relu", input_shape = (2, 1))(i) #o = l.Dense(1)(h1) #m = tf.keras.models.Model(inputs = i, outputs = o) m.summary() #g.train_generic(m, "r3") g.verify_generic(m, "r3")