initial commit
This commit is contained in:
commit
99b144c3c7
51
generic.py
Normal file
51
generic.py
Normal file
@ -0,0 +1,51 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import itertools as it
|
||||
|
||||
from sklearn.metrics import r2_score
|
||||
|
||||
from math import sin
|
||||
|
||||
def f(x, y): return (1 + sin(x**2 + 5*y)) / 2
|
||||
|
||||
def train_generic(model, marker):
|
||||
model.compile(optimizer = "adam", loss = "mse")
|
||||
|
||||
X = np.linspace(0, 10, 300)
|
||||
Y = np.linspace(0, 10, 300)
|
||||
|
||||
ins = np.array(list(it.product(X, Y)))
|
||||
ous = np.array(list(f(*i) for i in ins))
|
||||
|
||||
result = model.fit(ins, ous, epochs = 200, batch_size = 2048)
|
||||
|
||||
model.save_weights(f"save-{marker}.weights.h5")
|
||||
|
||||
def verify_generic(model, marker):
|
||||
model.compile(optimizer = "adam", loss = "mse")
|
||||
model.load_weights(f"save-{marker}.weights.h5")
|
||||
|
||||
X = np.linspace(0, 10, 50)
|
||||
Y = np.linspace(0, 10, 50)
|
||||
|
||||
ins = np.array(list(it.product(X, Y)))
|
||||
ous = np.array(list(f(*i) for i in ins))
|
||||
|
||||
preds = model.predict(ins)
|
||||
|
||||
print(f"Model {marker} has {r2_score(ous, preds)} r2 score")
|
||||
|
||||
preds_flat = [i[0] for i in preds]
|
||||
|
||||
px = np.array([X] * len(X))
|
||||
py = np.array([[x] * (len(X)) for x in X])
|
||||
pz1 = np.array([ous[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
|
||||
pz2 = np.array([preds_flat[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
|
||||
|
||||
#print([ous[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
|
||||
|
||||
p = plt.figure().add_subplot(projection='3d')
|
||||
p.plot_surface(px, py, pz1, edgecolor = "lime", alpha = 0.1)
|
||||
p.plot_surface(px, py, pz2, edgecolor = "blue", alpha = 0.3)
|
||||
plt.show()
|
13
nn1-normal.py
Normal file
13
nn1-normal.py
Normal file
@ -0,0 +1,13 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2,)),
|
||||
l.Dense(5, activation='relu'),
|
||||
l.Dense(1)
|
||||
])
|
||||
|
||||
#g.train_generic(m, "ff")
|
||||
g.verify_generic(m, "ff")
|
23
nn10-elman.py
Normal file
23
nn10-elman.py
Normal file
@ -0,0 +1,23 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2, 1)),
|
||||
l.SimpleRNN(100, activation = "relu", return_sequences = True),
|
||||
l.SimpleRNN(100, activation = "relu", return_sequences = True),
|
||||
l.SimpleRNN(100, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
#i = l.Input(shape = (2,))
|
||||
#h1 = l.SimpleRNN(10, activation = "relu", input_shape = (2, 1))(i)
|
||||
#o = l.Dense(1)(h1)
|
||||
|
||||
|
||||
#m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
m.summary()
|
||||
|
||||
#g.train_generic(m, "r3")
|
||||
g.verify_generic(m, "r3")
|
13
nn2-normal.py
Normal file
13
nn2-normal.py
Normal file
@ -0,0 +1,13 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2,)),
|
||||
l.Dense(1000, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
|
||||
#g.train_generic(m, "ff2")
|
||||
g.verify_generic(m, "ff2")
|
22
nn3-normal.py
Normal file
22
nn3-normal.py
Normal file
@ -0,0 +1,22 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2,)),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(100, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
|
||||
#g.train_generic(m, "ff3")
|
||||
g.verify_generic(m, "ff3")
|
17
nn4-normal.py
Normal file
17
nn4-normal.py
Normal file
@ -0,0 +1,17 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2,)),
|
||||
l.Dense(500, activation = "relu"),
|
||||
l.Dense(500, activation = "relu"),
|
||||
l.Dense(500, activation = "relu"),
|
||||
l.Dense(500, activation = "relu"),
|
||||
l.Dense(500, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
|
||||
#g.train_generic(m, "ff4")
|
||||
g.verify_generic(m, "ff4")
|
19
nn5-cascade.py
Normal file
19
nn5-cascade.py
Normal file
@ -0,0 +1,19 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
|
||||
i = l.Input(shape = (2,))
|
||||
h1 = l.Dense(20, activation='relu')(i)
|
||||
|
||||
y = l.Dense(1)(h1)
|
||||
co = l.Dense(1)(i)
|
||||
|
||||
o = l.Add()([y, co])
|
||||
|
||||
|
||||
m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
#g.train_generic(m, "c1")
|
||||
g.verify_generic(m, "c1")
|
19
nn6-cascade.py
Normal file
19
nn6-cascade.py
Normal file
@ -0,0 +1,19 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
|
||||
i = l.Input(shape = (2,))
|
||||
h1 = l.Dense(1000, activation='relu')(i)
|
||||
|
||||
y = l.Dense(1)(h1)
|
||||
co = l.Dense(1)(i)
|
||||
|
||||
o = l.Add()([y, co])
|
||||
|
||||
|
||||
m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
#g.train_generic(m, "c2")
|
||||
g.verify_generic(m, "c2")
|
24
nn7-cascade.py
Normal file
24
nn7-cascade.py
Normal file
@ -0,0 +1,24 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
|
||||
i = l.Input(shape = (2,))
|
||||
h1 = l.Dense(100, activation='tanh')(i)
|
||||
h2 = l.Dense(100, activation='tanh')(h1)
|
||||
h3 = l.Dense(100, activation='tanh')(h2)
|
||||
h4 = l.Dense(100, activation='tanh')(h3)
|
||||
h5 = l.Dense(100, activation='tanh')(h4)
|
||||
h6 = l.Dense(100, activation='tanh')(h5)
|
||||
|
||||
y = l.Dense(1)(h6)
|
||||
co = l.Dense(1)(i)
|
||||
|
||||
o = l.Add()([y, co])
|
||||
|
||||
|
||||
m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
#g.train_generic(m, "c3")
|
||||
g.verify_generic(m, "c3")
|
19
nn8-elman.py
Normal file
19
nn8-elman.py
Normal file
@ -0,0 +1,19 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2, 1)),
|
||||
l.SimpleRNN(10, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
#i = l.Input(shape = (2,))
|
||||
#h1 = l.SimpleRNN(10, activation = "relu", input_shape = (2, 1))(i)
|
||||
#o = l.Dense(1)(h1)
|
||||
|
||||
|
||||
#m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
#g.train_generic(m, "r1")
|
||||
g.verify_generic(m, "r1")
|
19
nn9-elman.py
Normal file
19
nn9-elman.py
Normal file
@ -0,0 +1,19 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.layers as l
|
||||
|
||||
import generic as g
|
||||
|
||||
m = tf.keras.models.Sequential([
|
||||
l.Input(shape = (2, 1)),
|
||||
l.SimpleRNN(1000, activation = "relu"),
|
||||
l.Dense(1)
|
||||
])
|
||||
#i = l.Input(shape = (2,))
|
||||
#h1 = l.SimpleRNN(10, activation = "relu", input_shape = (2, 1))(i)
|
||||
#o = l.Dense(1)(h1)
|
||||
|
||||
|
||||
#m = tf.keras.models.Model(inputs = i, outputs = o)
|
||||
|
||||
#g.train_generic(m, "r2")
|
||||
g.verify_generic(m, "r2")
|
Loading…
x
Reference in New Issue
Block a user