neuro-lab2/generic.py

52 lines
1.5 KiB
Python
Raw Permalink Normal View History

2025-10-04 21:03:58 +03:00
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
import itertools as it
from sklearn.metrics import r2_score
from math import sin
def f(x, y): return (1 + sin(x**2 + 5*y)) / 2
def train_generic(model, marker):
model.compile(optimizer = "adam", loss = "mse")
X = np.linspace(0, 10, 300)
Y = np.linspace(0, 10, 300)
ins = np.array(list(it.product(X, Y)))
ous = np.array(list(f(*i) for i in ins))
result = model.fit(ins, ous, epochs = 200, batch_size = 2048)
model.save_weights(f"save-{marker}.weights.h5")
def verify_generic(model, marker):
model.compile(optimizer = "adam", loss = "mse")
model.load_weights(f"save-{marker}.weights.h5")
X = np.linspace(0, 10, 50)
Y = np.linspace(0, 10, 50)
ins = np.array(list(it.product(X, Y)))
ous = np.array(list(f(*i) for i in ins))
preds = model.predict(ins)
print(f"Model {marker} has {r2_score(ous, preds)} r2 score")
preds_flat = [i[0] for i in preds]
px = np.array([X] * len(X))
py = np.array([[x] * (len(X)) for x in X])
pz1 = np.array([ous[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
pz2 = np.array([preds_flat[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
#print([ous[i*len(X):(i+1)*len(X)] for i, _ in enumerate(X)])
p = plt.figure().add_subplot(projection='3d')
p.plot_surface(px, py, pz1, edgecolor = "lime", alpha = 0.1)
p.plot_surface(px, py, pz2, edgecolor = "blue", alpha = 0.3)
plt.show()