import tensorflow as tf import numpy as np x = np.array([ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ]) y = np.array([sum(i) % 2 for i in x]) model = tf.keras.Sequential([ tf.keras.layers.Input(shape = (3,)), tf.keras.layers.Dense(3, activation = "tanh"), tf.keras.layers.Dense(1, activation = "sigmoid") ]) model.compile( optimizer = tf.keras.optimizers.Adam(learning_rate = 0.05), loss = "binary_crossentropy", metrics = ["accuracy"] ) model.load_weights("mod1_final.weights.h5") prediction = model.predict(x) for i, o, t in zip(x, prediction, y): print(f"i = {i}, o = {round(o[0])}, t = {t} : {'Good' if t == round(o[0]) else 'Bad'}")