neuro-lab1/verify.py

35 lines
750 B
Python
Raw Permalink Normal View History

2025-09-12 18:53:55 +03:00
import tensorflow as tf
import numpy as np
x = np.array([
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
])
y = np.array([sum(i) % 2 for i in x])
model = tf.keras.Sequential([
tf.keras.layers.Input(shape = (3,)),
tf.keras.layers.Dense(3, activation = "tanh"),
tf.keras.layers.Dense(1, activation = "sigmoid")
])
model.compile(
optimizer = tf.keras.optimizers.Adam(learning_rate = 0.05),
loss = "binary_crossentropy",
metrics = ["accuracy"]
)
model.load_weights("mod1_final.weights.h5")
prediction = model.predict(x)
for i, o, t in zip(x, prediction, y):
print(f"i = {i}, o = {round(o[0])}, t = {t} : {'Good' if t == round(o[0]) else 'Bad'}")