embedded-lab-6/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s_ex.c

1132 lines
38 KiB
C

/**
******************************************************************************
* @file stm32f4xx_hal_i2s_ex.c
* @author MCD Application Team
* @brief I2S HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of I2S extension peripheral:
* + Extension features Functions
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### I2S Extension features #####
==============================================================================
[..]
(#) In I2S full duplex mode, each SPI peripheral is able to manage sending and receiving
data simultaneously using two data lines. Each SPI peripheral has an extended block
called I2Sxext (i.e I2S2ext for SPI2 and I2S3ext for SPI3).
(#) The extension block is not a full SPI IP, it is used only as I2S slave to
implement full duplex mode. The extension block uses the same clock sources
as its master.
(#) Both I2Sx and I2Sx_ext can be configured as transmitters or receivers.
[..]
(@) Only I2Sx can deliver SCK and WS to I2Sx_ext in full duplex mode, where
I2Sx can be I2S2 or I2S3.
##### How to use this driver #####
===============================================================================
[..]
Three operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Send and receive in the same time an amount of data in blocking mode using HAL_I2SEx_TransmitReceive()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Send and receive in the same time an amount of data in non blocking mode using HAL_I2SEx_TransmitReceive_IT()
(+) At transmission/reception end of transfer HAL_I2SEx_TxRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2SEx_TxRxCpltCallback
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2S_ErrorCallback
*** DMA mode IO operation ***
==============================
[..]
(+) Send and receive an amount of data in non blocking mode (DMA) using HAL_I2SEx_TransmitReceive_DMA()
(+) At transmission/reception end of transfer HAL_I2SEx_TxRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_TxRxCpltCallback
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2S_ErrorCallback
(+) __HAL_I2SEXT_FLUSH_RX_DR: In Full-Duplex Slave mode, if HAL_I2S_DMAStop is used to stop the
communication, an error HAL_I2S_ERROR_BUSY_LINE_RX is raised as the master continue to transmit data.
In this case __HAL_I2SEXT_FLUSH_RX_DR macro must be used to flush the remaining data
inside I2Sx and I2Sx_ext DR registers and avoid using DeInit/Init process for the next transfer.
@endverbatim
Additional Figure: The Extended block uses the same clock sources as its master.
+-----------------------+
I2Sx_SCK | |
----------+-->| I2Sx |------------------->I2Sx_SD(in/out)
+--|-->| |
| | +-----------------------+
| |
I2S_WS | |
------>| |
| | +-----------------------+
| +-->| |
| | I2Sx_ext |------------------->I2Sx_extSD(in/out)
+----->| |
+-----------------------+
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
#ifdef HAL_I2S_MODULE_ENABLED
/** @defgroup I2SEx I2SEx
* @brief I2S Extended HAL module driver
* @{
*/
#if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
/* Private typedef -----------------------------------------------------------*/
/** @defgroup I2SEx_Private_Typedef I2S Extended Private Typedef
* @{
*/
typedef enum
{
I2S_USE_I2S = 0x00U, /*!< I2Sx should be used */
I2S_USE_I2SEXT = 0x01U, /*!< I2Sx_ext should be used */
} I2S_UseTypeDef;
/**
* @}
*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup I2SEx_Private_Functions I2S Extended Private Functions
* @{
*/
static void I2SEx_TxRxDMAHalfCplt(DMA_HandleTypeDef *hdma);
static void I2SEx_TxRxDMACplt(DMA_HandleTypeDef *hdma);
static void I2SEx_TxRxDMAError(DMA_HandleTypeDef *hdma);
static void I2SEx_RxISR_I2S(I2S_HandleTypeDef *hi2s);
static void I2SEx_RxISR_I2SExt(I2S_HandleTypeDef *hi2s);
static void I2SEx_TxISR_I2S(I2S_HandleTypeDef *hi2s);
static void I2SEx_TxISR_I2SExt(I2S_HandleTypeDef *hi2s);
static HAL_StatusTypeDef I2SEx_FullDuplexWaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s,
uint32_t Flag,
uint32_t State,
uint32_t Timeout,
I2S_UseTypeDef i2sUsed);
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2SEx I2SEx
* @{
*/
/** @addtogroup I2SEx_Exported_Functions I2S Extended Exported Functions
* @{
*/
/** @defgroup I2SEx_Exported_Functions_Group1 I2S Extended IO operation functions
* @brief I2SEx IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions#####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the I2S data
transfers.
(#) There are two modes of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using Interrupts
or DMA. These functions return the status of the transfer startup.
The end of the data processing will be indicated through the
dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
(#) Blocking mode functions are :
(++) HAL_I2SEx_TransmitReceive()
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_I2SEx_TransmitReceive_IT()
(++) HAL_I2SEx_FullDuplex_IRQHandler()
(#) No-Blocking mode functions with DMA are :
(++) HAL_I2SEx_TransmitReceive_DMA()
(#) A set of Transfer Complete Callback are provided in non Blocking mode:
(++) HAL_I2SEx_TxRxCpltCallback()
@endverbatim
* @{
*/
/**
* @brief Full-Duplex Transmit/Receive data in blocking mode.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @param Timeout Timeout duration
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
uint16_t *pTxData,
uint16_t *pRxData,
uint16_t Size,
uint32_t Timeout)
{
uint32_t tmp1 = 0U;
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
/* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
is selected during the I2S configuration phase, the Size parameter means the number
of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
frame is selected the Size parameter means the number of 16-bit data length. */
if ((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
{
hi2s->TxXferSize = (Size << 1U);
hi2s->TxXferCount = (Size << 1U);
hi2s->RxXferSize = (Size << 1U);
hi2s->RxXferCount = (Size << 1U);
}
else
{
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
}
/* Set state and reset error code */
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
/* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
if ((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
{
/* Prepare the First Data before enabling the I2S */
hi2s->Instance->DR = (*pTxData++);
hi2s->TxXferCount--;
/* Enable I2Sext(receiver) before enabling I2Sx peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2Sx peripheral */
__HAL_I2S_ENABLE(hi2s);
/* Check if Master Receiver mode is selected */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_TX)
{
/* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
access to the SPI_SR register. */
__HAL_I2SEXT_CLEAR_OVRFLAG(hi2s);
}
while ((hi2s->RxXferCount > 0U) || (hi2s->TxXferCount > 0U))
{
if (hi2s->TxXferCount > 0U)
{
/* Wait until TXE flag is set */
if (I2SEx_FullDuplexWaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout, I2S_USE_I2S) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Write Data on DR register */
hi2s->Instance->DR = (*pTxData++);
hi2s->TxXferCount--;
/* Check if an underrun occurs */
if ((__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET) && (tmp1 == I2S_MODE_SLAVE_TX))
{
/* Clear Underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
}
}
if (hi2s->RxXferCount > 0U)
{
/* Wait until RXNE flag is set */
if (I2SEx_FullDuplexWaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, SET, Timeout, I2S_USE_I2SEXT) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Read Data from DR register */
(*pRxData++) = I2SxEXT(hi2s->Instance)->DR;
hi2s->RxXferCount--;
/* Check if an overrun occurs */
if (__HAL_I2SEXT_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET)
{
/* Clear Overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
}
}
}
}
/* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
else
{
/* Prepare the First Data before enabling the I2S */
I2SxEXT(hi2s->Instance)->DR = (*pTxData++);
hi2s->TxXferCount--;
/* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2S peripheral before the I2Sext*/
__HAL_I2S_ENABLE(hi2s);
/* Check if Master Receiver mode is selected */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
{
/* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
access to the SPI_SR register. */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
}
while ((hi2s->RxXferCount > 0U) || (hi2s->TxXferCount > 0U))
{
if (hi2s->TxXferCount > 0U)
{
/* Wait until TXE flag is set */
if (I2SEx_FullDuplexWaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout, I2S_USE_I2SEXT) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Write Data on DR register */
I2SxEXT(hi2s->Instance)->DR = (*pTxData++);
hi2s->TxXferCount--;
/* Check if an underrun occurs */
if ((__HAL_I2SEXT_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET) && (tmp1 == I2S_MODE_SLAVE_RX))
{
/* Clear Underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
}
}
if (hi2s->RxXferCount > 0U)
{
/* Wait until RXNE flag is set */
if (I2SEx_FullDuplexWaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, SET, Timeout, I2S_USE_I2S) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Read Data from DR register */
(*pRxData++) = hi2s->Instance->DR;
hi2s->RxXferCount--;
/* Check if an overrun occurs */
if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET)
{
/* Clear Overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
}
}
}
}
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
if (hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s,
uint16_t *pTxData,
uint16_t *pRxData,
uint16_t Size)
{
uint32_t tmp1 = 0U;
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
hi2s->pTxBuffPtr = pTxData;
hi2s->pRxBuffPtr = pRxData;
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
/* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
is selected during the I2S configuration phase, the Size parameter means the number
of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
frame is selected the Size parameter means the number of 16-bit data length. */
if ((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
{
hi2s->TxXferSize = (Size << 1U);
hi2s->TxXferCount = (Size << 1U);
hi2s->RxXferSize = (Size << 1U);
hi2s->RxXferCount = (Size << 1U);
}
else
{
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
}
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
/* Set the function for IT treatment */
if ((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
{
/* Enable I2Sext RXNE and ERR interrupts */
__HAL_I2SEXT_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Enable I2Sx TXE and ERR interrupts */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Transmit First data */
hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0U)
{
/* Disable TXE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
}
}
else /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
{
/* Enable I2Sext TXE and ERR interrupts */
__HAL_I2SEXT_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Enable I2Sext RXNE and ERR interrupts */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Transmit First data */
I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0U)
{
/* Disable I2Sext TXE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
}
}
__HAL_UNLOCK(hi2s);
/* Enable I2Sext peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
return HAL_OK;
}
/**
* @brief Full-Duplex Transmit/Receive data in non-blocking mode using DMA
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s,
uint16_t *pTxData,
uint16_t *pRxData,
uint16_t Size)
{
uint32_t *tmp = NULL;
uint32_t tmp1 = 0U;
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
hi2s->pTxBuffPtr = pTxData;
hi2s->pRxBuffPtr = pRxData;
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
/* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
is selected during the I2S configuration phase, the Size parameter means the number
of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
frame is selected the Size parameter means the number of 16-bit data length. */
if ((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
{
hi2s->TxXferSize = (Size << 1U);
hi2s->TxXferCount = (Size << 1U);
hi2s->RxXferSize = (Size << 1U);
hi2s->RxXferCount = (Size << 1U);
}
else
{
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
}
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
/* Set the I2S Rx DMA Half transfer complete callback */
hi2s->hdmarx->XferHalfCpltCallback = I2SEx_TxRxDMAHalfCplt;
/* Set the I2S Rx DMA transfer complete callback */
hi2s->hdmarx->XferCpltCallback = I2SEx_TxRxDMACplt;
/* Set the I2S Rx DMA error callback */
hi2s->hdmarx->XferErrorCallback = I2SEx_TxRxDMAError;
/* Set the I2S Tx DMA Half transfer complete callback as NULL */
hi2s->hdmatx->XferHalfCpltCallback = NULL;
/* Set the I2S Tx DMA transfer complete callback as NULL */
hi2s->hdmatx->XferCpltCallback = NULL;
/* Set the I2S Tx DMA error callback */
hi2s->hdmatx->XferErrorCallback = I2SEx_TxRxDMAError;
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
/* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
if ((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
{
/* Enable the Rx DMA Stream */
tmp = (uint32_t *)&pRxData;
HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, *(uint32_t *)tmp, hi2s->RxXferSize);
/* Enable Rx DMA Request */
SET_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_RXDMAEN);
/* Enable the Tx DMA Stream */
tmp = (uint32_t *)&pTxData;
HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t *)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);
/* Enable Tx DMA Request */
SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);
}
else
{
/* Check if Master Receiver mode is selected */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
{
/* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
access to the SPI_SR register. */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
}
/* Enable the Tx DMA Stream */
tmp = (uint32_t *)&pTxData;
HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t *)tmp, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, hi2s->TxXferSize);
/* Enable Tx DMA Request */
SET_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_TXDMAEN);
/* Enable the Rx DMA Stream */
tmp = (uint32_t *)&pRxData;
HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t *)tmp, hi2s->RxXferSize);
/* Enable Rx DMA Request */
SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S is already enabled */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
{
/* Enable I2Sext(transmitter) before enabling I2Sx peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2S peripheral before the I2Sext */
__HAL_I2S_ENABLE(hi2s);
}
return HAL_OK;
}
/**
* @brief This function handles I2S/I2Sext interrupt requests in full-duplex mode.
* @param hi2s I2S handle
* @retval HAL status
*/
void HAL_I2SEx_FullDuplex_IRQHandler(I2S_HandleTypeDef *hi2s)
{
__IO uint32_t i2ssr = hi2s->Instance->SR;
__IO uint32_t i2sextsr = I2SxEXT(hi2s->Instance)->SR;
__IO uint32_t i2scr2 = hi2s->Instance->CR2;
__IO uint32_t i2sextcr2 = I2SxEXT(hi2s->Instance)->CR2;
/* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
if ((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
{
/* I2S in mode Transmitter -------------------------------------------------*/
if (((i2ssr & I2S_FLAG_TXE) == I2S_FLAG_TXE) && ((i2scr2 & I2S_IT_TXE) != RESET))
{
/* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */
I2SEx_TxISR_I2S(hi2s);
}
/* I2Sext in mode Receiver -----------------------------------------------*/
if (((i2sextsr & I2S_FLAG_RXNE) == I2S_FLAG_RXNE) && ((i2sextcr2 & I2S_IT_RXNE) != RESET))
{
/* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */
I2SEx_RxISR_I2SExt(hi2s);
}
/* I2Sext Overrun error interrupt occurred --------------------------------*/
if (((i2sextsr & I2S_FLAG_OVR) == I2S_FLAG_OVR) && ((i2sextcr2 & I2S_IT_ERR) != RESET))
{
/* Disable RXNE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Disable TXE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Clear Overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/* I2S Underrun error interrupt occurred ----------------------------------*/
if (((i2ssr & I2S_FLAG_UDR) == I2S_FLAG_UDR) && ((i2scr2 & I2S_IT_ERR) != RESET))
{
/* Disable TXE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Disable RXNE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Clear underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
/* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
else
{
/* I2Sext in mode Transmitter ----------------------------------------------*/
if (((i2sextsr & I2S_FLAG_TXE) == I2S_FLAG_TXE) && ((i2sextcr2 & I2S_IT_TXE) != RESET))
{
/* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */
I2SEx_TxISR_I2SExt(hi2s);
}
/* I2S in mode Receiver --------------------------------------------------*/
if (((i2ssr & I2S_FLAG_RXNE) == I2S_FLAG_RXNE) && ((i2scr2 & I2S_IT_RXNE) != RESET))
{
/* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */
I2SEx_RxISR_I2S(hi2s);
}
/* I2S Overrun error interrupt occurred -------------------------------------*/
if (((i2ssr & I2S_FLAG_OVR) == I2S_FLAG_OVR) && ((i2scr2 & I2S_IT_ERR) != RESET))
{
/* Disable RXNE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Disable TXE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/* I2Sext Underrun error interrupt occurred -------------------------------*/
if (((i2sextsr & I2S_FLAG_UDR) == I2S_FLAG_UDR) && ((i2sextcr2 & I2S_IT_ERR) != RESET))
{
/* Disable TXE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
/* Disable RXNE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief Tx and Rx Transfer half completed callback
* @param hi2s I2S handle
* @retval None
*/
__weak void HAL_I2SEx_TxRxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2SEx_TxRxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx and Rx Transfer completed callback
* @param hi2s I2S handle
* @retval None
*/
__weak void HAL_I2SEx_TxRxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2SEx_TxRxCpltCallback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup I2SEx_Private_Functions I2S Extended Private Functions
* @{
*/
/**
* @brief DMA I2S transmit receive process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2SEx_TxRxDMAHalfCplt(DMA_HandleTypeDef *hdma)
{
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Call user TxRx Half complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxHalfCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxHalfCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S transmit receive process complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2SEx_TxRxDMACplt(DMA_HandleTypeDef *hdma)
{
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* If DMA is configured in DMA_NORMAL mode */
if (hdma->Init.Mode == DMA_NORMAL)
{
if (((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_TX) || \
((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_TX))
/* Disable Tx & Rx DMA Requests */
{
CLEAR_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_RXDMAEN);
CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);
}
else
{
CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN);
CLEAR_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_TXDMAEN);
}
hi2s->RxXferCount = 0U;
hi2s->TxXferCount = 0U;
hi2s->State = HAL_I2S_STATE_READY;
}
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S communication error callback
* @param hdma DMA handle
* @retval None
*/
static void I2SEx_TxRxDMAError(DMA_HandleTypeDef *hdma)
{
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Disable Rx and Tx DMA Request */
CLEAR_BIT(hi2s->Instance->CR2, (SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN));
CLEAR_BIT(I2SxEXT(hi2s->Instance)->CR2, (SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN));
hi2s->TxXferCount = 0U;
hi2s->RxXferCount = 0U;
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief I2S Full-Duplex IT handler transmit function
* @param hi2s I2S handle
* @retval None
*/
static void I2SEx_TxISR_I2S(I2S_HandleTypeDef *hi2s)
{
/* Write Data on DR register */
hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0U)
{
/* Disable TXE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
if (hi2s->RxXferCount == 0U)
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief I2SExt Full-Duplex IT handler transmit function
* @param hi2s I2S handle
* @retval None
*/
static void I2SEx_TxISR_I2SExt(I2S_HandleTypeDef *hi2s)
{
/* Write Data on DR register */
I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0U)
{
/* Disable I2Sext TXE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
if (hi2s->RxXferCount == 0U)
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief I2S Full-Duplex IT handler receive function
* @param hi2s I2S handle
* @retval None
*/
static void I2SEx_RxISR_I2S(I2S_HandleTypeDef *hi2s)
{
/* Read Data from DR register */
(*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
hi2s->RxXferCount--;
if (hi2s->RxXferCount == 0U)
{
/* Disable RXNE and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
if (hi2s->TxXferCount == 0U)
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief I2SExt Full-Duplex IT handler receive function
* @param hi2s I2S handle
* @retval None
*/
static void I2SEx_RxISR_I2SExt(I2S_HandleTypeDef *hi2s)
{
/* Read Data from DR register */
(*hi2s->pRxBuffPtr++) = I2SxEXT(hi2s->Instance)->DR;
hi2s->RxXferCount--;
if (hi2s->RxXferCount == 0U)
{
/* Disable I2Sext RXNE and ERR interrupt */
__HAL_I2SEXT_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
if (hi2s->TxXferCount == 0U)
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief This function handles I2S Communication Timeout.
* @param hi2s I2S handle
* @param Flag Flag checked
* @param State Value of the flag expected
* @param Timeout Duration of the timeout
* @param i2sUsed I2S instance reference
* @retval HAL status
*/
static HAL_StatusTypeDef I2SEx_FullDuplexWaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s,
uint32_t Flag,
uint32_t State,
uint32_t Timeout,
I2S_UseTypeDef i2sUsed)
{
uint32_t tickstart = HAL_GetTick();
if (i2sUsed == I2S_USE_I2S)
{
/* Wait until flag is reset */
while (((__HAL_I2S_GET_FLAG(hi2s, Flag)) ? SET : RESET) != State)
{
if (Timeout != HAL_MAX_DELAY)
{
if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
}
}
}
else /* i2sUsed == I2S_USE_I2SEXT */
{
/* Wait until flag is reset */
while (((__HAL_I2SEXT_GET_FLAG(hi2s, Flag)) ? SET : RESET) != State)
{
if (Timeout != HAL_MAX_DELAY)
{
if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
}
}
}
return HAL_OK;
}
/**
* @}
*/
#endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
/**
* @}
*/
#endif /* HAL_I2S_MODULE_ENABLED */
/**
* @}
*/