embedded-lab-2/Core/Src/main.c

466 lines
13 KiB
C
Raw Normal View History

2024-10-26 17:55:08 +03:00
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define CYCLE_LENGTH 5000
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
enum MODES {
ALL_PWM = 0,
SEQUENTIAL_GLOWING = 1,
SEQUENTIAL_SINGLE_PWM = 2,
SEQUENTIAL_DOUBLE_PWM = 3,
SEQUENTIAL_TRIPLE_PWM = 4,
PAIRED_BLINKING_WITH_PAIRED_GLOWING = 5,
PAIRED_BLINKING = 6,
STANDBY = 7,
};
unsigned int current_mode = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
static void paired_blinking(void) {
HAL_GPIO_WritePin(GPIOD, 0xF000, GPIO_PIN_RESET);
for (unsigned int j = 0; j < 2; j++) {
for (unsigned int i = 0; i < 2; i++) {
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin | LED_YELLOW_Pin, GPIO_PIN_SET);
HAL_Delay(90);
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin | LED_YELLOW_Pin, GPIO_PIN_RESET);
HAL_Delay(90);
}
for (unsigned int i = 0; i < 2; i++) {
HAL_GPIO_WritePin(GPIOD, LED_RED_Pin | LED_GREEN_Pin, GPIO_PIN_SET);
HAL_Delay(90);
HAL_GPIO_WritePin(GPIOD, LED_RED_Pin | LED_GREEN_Pin, GPIO_PIN_RESET);
HAL_Delay(90);
}
}
}
static void paired_glowing(void) {
for (unsigned int i = 0; i < 4; i++) {
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin | LED_GREEN_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_YELLOW_Pin | LED_RED_Pin, GPIO_PIN_RESET);
HAL_Delay(180);
HAL_GPIO_WritePin(GPIOD, LED_YELLOW_Pin | LED_RED_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin | LED_GREEN_Pin, GPIO_PIN_RESET);
HAL_Delay(180);
}
}
static void paired_blinking_with_paired_glowing(void) {
paired_blinking();
paired_glowing();
}
static void pwm_leds_single(uint16_t leds, unsigned int step) {
int brightness = 0;
while (brightness <= CYCLE_LENGTH) {
HAL_GPIO_WritePin(GPIOD, leds, GPIO_PIN_SET);
for (int j = 0; j < brightness; j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds, GPIO_PIN_RESET);
for (int j = 0; j < CYCLE_LENGTH - brightness; j++) {
asm("nop");
}
brightness += step;
}
while (brightness >= 0) {
HAL_GPIO_WritePin(GPIOD, leds, GPIO_PIN_SET);
for (int j = 0; j < brightness; j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds, GPIO_PIN_RESET);
for (int j = 0; j < CYCLE_LENGTH - brightness; j++) {
asm("nop");
}
brightness -= step;
}
}
static void pwm_leds_chain(uint16_t leds_on, uint16_t leds_off, unsigned int step) {
int PWM_HALF_CYCLE = (CYCLE_LENGTH >> 1);
int on_brightness = 0;
// leds_on 0 -> on_brightness
// leds_off 0 -> CYCLE_LENGTH - on_brightness
// On this stage DUTY_ON is longer for leds_off:
while (on_brightness <= PWM_HALF_CYCLE) {
HAL_GPIO_WritePin(GPIOD, leds_on | leds_off, GPIO_PIN_SET);
for (int j = 0; j < on_brightness; j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds_on, GPIO_PIN_RESET);
for (int j = on_brightness; j < (CYCLE_LENGTH - on_brightness); j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds_off, GPIO_PIN_RESET);
for (int j = CYCLE_LENGTH - on_brightness; j < CYCLE_LENGTH; j++) {
asm("nop");
}
on_brightness += step;
}
// clamp to half the pwm cycle duration
on_brightness = PWM_HALF_CYCLE;
// On this stage DUTY_ON is longer for leds_on:
while (on_brightness >= 0) {
HAL_GPIO_WritePin(GPIOD, leds_on | leds_off, GPIO_PIN_SET);
for (int j = 0; j < on_brightness; j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds_off, GPIO_PIN_RESET);
for (int j = on_brightness; j < (CYCLE_LENGTH - on_brightness); j++) {
asm("nop");
}
HAL_GPIO_WritePin(GPIOD, leds_on, GPIO_PIN_RESET);
for (int j = CYCLE_LENGTH - on_brightness; j < CYCLE_LENGTH; j++) {
asm("nop");
}
on_brightness -= step;
}
// leave required LEDs on for better chaining effect
HAL_GPIO_WritePin(GPIOD, leds_on, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, leds_off, GPIO_PIN_RESET);
}
static void update_state_counter(unsigned int* current_mode,
unsigned int* last_mode,
unsigned int* current_state) {
if (*current_mode != *last_mode) {
*last_mode = *current_mode;
*current_state = 0;
HAL_GPIO_WritePin(GPIOD, LED_RED_Pin | LED_GREEN_Pin | LED_BLUE_Pin | LED_YELLOW_Pin, GPIO_PIN_RESET);
} else {
*current_state += 1;
*current_state &= 0x3;
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
unsigned int current_state = 0;
unsigned int last_mode = current_mode;
while (1)
{
switch (current_mode) {
case ALL_PWM:
//pwm_leds_single(LED_RED_Pin | LED_YELLOW_Pin | LED_GREEN_Pin | LED_BLUE_Pin, 20);
pwm_leds_chain(LED_RED_Pin | LED_GREEN_Pin, LED_BLUE_Pin | LED_YELLOW_Pin, 140);
pwm_leds_chain(LED_BLUE_Pin | LED_YELLOW_Pin, LED_RED_Pin | LED_GREEN_Pin, 140);
break;
case SEQUENTIAL_GLOWING:
update_state_counter(&current_mode, &last_mode, &current_state);
switch (current_state) {
case 0:
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_GREEN_Pin, GPIO_PIN_RESET);
break;
case 1:
HAL_GPIO_WritePin(GPIOD, LED_RED_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_BLUE_Pin, GPIO_PIN_RESET);
break;
case 2:
HAL_GPIO_WritePin(GPIOD, LED_YELLOW_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_RED_Pin, GPIO_PIN_RESET);
break;
case 3:
HAL_GPIO_WritePin(GPIOD, LED_GREEN_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, LED_YELLOW_Pin, GPIO_PIN_RESET);
break;
}
HAL_Delay(2000);
break;
case SEQUENTIAL_SINGLE_PWM:
update_state_counter(&current_mode, &last_mode, &current_state);
switch (current_state) {
case 0:
pwm_leds_single(LED_BLUE_Pin, 10);
break;
case 1:
pwm_leds_single(LED_RED_Pin, 10);
break;
case 2:
pwm_leds_single(LED_YELLOW_Pin, 10);
break;
case 3:
pwm_leds_single(LED_GREEN_Pin, 10);
break;
}
HAL_Delay(1000);
break;
case SEQUENTIAL_DOUBLE_PWM:
update_state_counter(&current_mode, &last_mode, &current_state);
switch (current_state) {
case 0:
pwm_leds_chain(LED_RED_Pin, LED_BLUE_Pin, 10);
break;
case 1:
pwm_leds_chain(LED_YELLOW_Pin, LED_RED_Pin, 10);
break;
case 2:
pwm_leds_chain(LED_GREEN_Pin, LED_YELLOW_Pin, 10);
break;
case 3:
pwm_leds_chain(LED_BLUE_Pin, LED_GREEN_Pin, 10);
break;
}
HAL_Delay(2000);
break;
case SEQUENTIAL_TRIPLE_PWM:
update_state_counter(&current_mode, &last_mode, &current_state);
switch (current_state) {
case 0:
pwm_leds_chain(LED_YELLOW_Pin, LED_BLUE_Pin, 20);
break;
case 1:
pwm_leds_chain(LED_GREEN_Pin, LED_RED_Pin, 20);
break;
case 2:
pwm_leds_chain(LED_BLUE_Pin, LED_YELLOW_Pin, 20);
break;
case 3:
pwm_leds_chain(LED_RED_Pin, LED_GREEN_Pin, 20);
break;
}
break;
case PAIRED_BLINKING_WITH_PAIRED_GLOWING:
paired_blinking_with_paired_glowing();
break;
case PAIRED_BLINKING:
paired_blinking();
break;
case STANDBY:
HAL_GPIO_WritePin(GPIOD, 0xF000, 1);
break;
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, LED_GREEN_Pin|LED_YELLOW_Pin|LED_RED_Pin|LED_BLUE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : LED_GREEN_Pin LED_YELLOW_Pin LED_RED_Pin LED_BLUE_Pin */
GPIO_InitStruct.Pin = LED_GREEN_Pin|LED_YELLOW_Pin|LED_RED_Pin|LED_BLUE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */