Compare commits
2 Commits
27e706a757
...
34da704168
Author | SHA1 | Date | |
---|---|---|---|
34da704168 | |||
77a51eac70 |
15
labs/21/README.md
Normal file
15
labs/21/README.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Як користуватися
|
||||
|
||||
Необхідно клонувати цей репозиторій, наприклад:
|
||||
```
|
||||
git clone http://10.1.1.1:3000/dymik739/physics-labs-collection.git
|
||||
```
|
||||
|
||||
Далі потрібно перейти у папку зі скриптом
|
||||
```
|
||||
cd physics-labs-collection/labs/21/
|
||||
```
|
||||
та запустити скрипт, вказавши файл зі вхідними даними, наприклад:
|
||||
```
|
||||
python3 processor.py sample_data.txt
|
||||
```
|
2534
labs/21/prettytable.py
Normal file
2534
labs/21/prettytable.py
Normal file
File diff suppressed because it is too large
Load Diff
51
labs/21/processor.py
Normal file
51
labs/21/processor.py
Normal file
@ -0,0 +1,51 @@
|
||||
import sys
|
||||
import math
|
||||
|
||||
def avg(a):
|
||||
return sum(a) / len(a)
|
||||
|
||||
resistances = []
|
||||
|
||||
settings = {'r': 4, "R2": 0.0, "R3": 0.0}
|
||||
|
||||
for raw_i in open(sys.argv[1], "r"):
|
||||
i = raw_i.rstrip("\r\n")
|
||||
|
||||
if len(i) > 0:
|
||||
if i[0] == "#":
|
||||
cmd = i[1:].split()
|
||||
if cmd[0] in settings:
|
||||
settings[cmd[0]] = cmd[1]
|
||||
else:
|
||||
resistances.append([i.split()[0]] + [float(j.replace(',', '.')) for j in i.split()[1:]])
|
||||
|
||||
table_data = []
|
||||
|
||||
for i in resistances:
|
||||
Rxi = [round(r*float(settings["R2"])/float(settings["R3"]), int(settings['r'])) for r in i[1:]]
|
||||
R_avg = round(avg(Rxi), int(settings['r']))
|
||||
|
||||
table_data.append([i[0]] + Rxi + [R_avg])
|
||||
|
||||
from prettytable import PrettyTable
|
||||
|
||||
pt = PrettyTable()
|
||||
|
||||
pt.add_column("", list(range(1, len(table_data[0][1:-1]) + 1)) + ["❬Rx❭"])
|
||||
|
||||
for i in table_data:
|
||||
pt.add_column(i[0], i[1:])
|
||||
|
||||
print(pt)
|
||||
|
||||
#print(table_data)
|
||||
|
||||
print("Обчислюємо значення S для кожного стовпця:")
|
||||
for j in table_data:
|
||||
s = math.sqrt( sum([ (i - j[-1])**2 for i in j[1:-1] ]) / (len(j[1:-1])*(len(j[1:-1])-1)) )
|
||||
print(f"S ❬{j[0]}❭ = {round(s, int(settings['r']))}")
|
||||
|
||||
print("\nОбчислюємо значення σ для кожного стовпця:")
|
||||
for j in table_data:
|
||||
sigma = math.sqrt(avg([i**2 for i in j[1:-1]]) - avg(j[1:-1])**2)
|
||||
print(f"σ ❬{j[0]}❭ = {round(sigma, int(settings['r']))}")
|
9
labs/21/sample_data.txt
Normal file
9
labs/21/sample_data.txt
Normal file
@ -0,0 +1,9 @@
|
||||
# R2 35000
|
||||
# R3 4600
|
||||
# r 15
|
||||
|
||||
R1x 3403,1 3400,0 3402,9 3403,1 3401,1
|
||||
R2x 34,1 33,4 33,3 33,5 34,2
|
||||
R3x 1771,7 1772,2 1772,2 1771,8 1771,5
|
||||
R4x 740,0 741,0 740,7 741,2 740,8
|
||||
R5x 2530,0 2533,0 2532,0 2532,9 2531,0
|
@ -4,7 +4,7 @@ import os
|
||||
|
||||
# defining some constants
|
||||
|
||||
r = 3 # round to n digits
|
||||
r = 32 # round to n digits
|
||||
column_width = 11 # set column width of final table
|
||||
|
||||
# checking if the file is provided correctly
|
||||
@ -144,10 +144,44 @@ sigma_beta2 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_da
|
||||
sigma_beta3 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[2]))) + avg(list(zip(*required_data["2"]['stats']))[2])**2), r)
|
||||
sigma_beta4 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[5]))) + avg(list(zip(*required_data["2"]['stats']))[5])**2), r)
|
||||
|
||||
sigma_t1 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[1]))) + avg(list(zip(*required_data["1"]['stats']))[1])**2), r)
|
||||
sigma_t2 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[3]))) + avg(list(zip(*required_data["1"]['stats']))[3])**2), r)
|
||||
sigma_t3 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[1]))) + avg(list(zip(*required_data["2"]['stats']))[1])**2), r)
|
||||
sigma_t4 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[3]))) + avg(list(zip(*required_data["2"]['stats']))[3])**2), r)
|
||||
sigma_M1 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[0]))) + avg(list(zip(*required_data["1"]['stats']))[0])**2), r)
|
||||
sigma_M2 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[3]))) + avg(list(zip(*required_data["1"]['stats']))[3])**2), r)
|
||||
sigma_M3 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[0]))) + avg(list(zip(*required_data["2"]['stats']))[0])**2), r)
|
||||
sigma_M4 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[3]))) + avg(list(zip(*required_data["2"]['stats']))[3])**2), r)
|
||||
|
||||
print("σβ (1-4) (DO NOT USE):", sigma_beta1/avg(list(zip(*required_data["1"]['stats']))[2]), sigma_beta2/avg(list(zip(*required_data["1"]['stats']))[5]), sigma_beta3/avg(list(zip(*required_data["2"]['stats']))[2]), sigma_beta4/avg(list(zip(*required_data["2"]['stats']))[5]))
|
||||
print("σt (1-4) (DO NOT USE):", sigma_t1/avg(list(zip(*required_data["1"]['stats']))[1]), sigma_t2/avg(list(zip(*required_data["1"]['stats']))[3]), sigma_t3/avg(list(zip(*required_data["2"]['stats']))[1]), sigma_t4/avg(list(zip(*required_data["2"]['stats']))[3]))
|
||||
#print("σβ (1-4) (DO NOT USE):", sigma_beta1/avg(list(zip(*required_data["1"]['stats']))[2]), sigma_beta2/avg(list(zip(*required_data["1"]['stats']))[5]), sigma_beta3/avg(list(zip(*required_data["2"]['stats']))[2]), sigma_beta4/avg(list(zip(*required_data["2"]['stats']))[5]))
|
||||
#print("σM (1-4) (DO NOT USE):", sigma_t1/avg(list(zip(*required_data["1"]['stats']))[0]), sigma_t2/avg(list(zip(*required_data["1"]['stats']))[3]), sigma_t3/avg(list(zip(*required_data["2"]['stats']))[0]), sigma_t4/avg(list(zip(*required_data["2"]['stats']))[3]))
|
||||
|
||||
print("σβ:", avg([math.sqrt(sigma_beta1), math.sqrt(sigma_beta2), math.sqrt(sigma_beta3), math.sqrt(sigma_beta4)]))
|
||||
print("σM:", avg([math.sqrt(sigma_M1), math.sqrt(sigma_M2), math.sqrt(sigma_M3), math.sqrt(sigma_M4)]))
|
||||
|
||||
print(required_data)
|
||||
'''
|
||||
for t in required_data:
|
||||
I_values_r1 = [(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[0], list(zip(*required_data[t]['stats']))[2])]
|
||||
Mt1 = required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0] - (min(I_values_r1) * required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2])
|
||||
print(f"Таблиця {t}, стовпець 1: Imin = {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0]} / {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2]} = {round(min(I_values_r1), r)}; Mт = {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0]} - {min(I_values_r1)}*{required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2]} = {round(Mt1, r)} (за мінімальний узято рядок {I_values_r1.index(min(I_values_r1))})")
|
||||
|
||||
I_values_r2 = [(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5])]
|
||||
Mt2 = required_data[t]['stats'][I_values_r2.index(min(I_values_r2))][3] - (min(I_values_r2) * required_data[t]['stats'][I_values_r2.index(min(I_values_r2))][5])
|
||||
print(f"Таблиця {t}, стовпець 2: Imin = {round(min(I_values_r2), r)}; Mт = {round(Mt2, r)}")
|
||||
#i_min_2 = min([(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5])])
|
||||
#print(f"Imin for {t}-2: {round(i_min_2, r)}")
|
||||
'''
|
||||
for t in required_data:
|
||||
I_values_r1 = []
|
||||
M_and_beta = list(zip(list(zip(*required_data[t]['stats']))[0], list(zip(*required_data[t]['stats']))[2]))
|
||||
print(M_and_beta)
|
||||
for i in range(5):
|
||||
print((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
|
||||
I_values_r1.append((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
|
||||
|
||||
print(f"Таблиця {t}, стовпець 1: Imin = {min(I_values_r1)}; Mт = {M_and_beta[I_values_r1.index(min(I_values_r1))][0] - min(I_values_r1)*M_and_beta[I_values_r1.index(min(I_values_r1))][1]}")
|
||||
|
||||
I_values_r2 = []
|
||||
M_and_beta = list(zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5]))
|
||||
for i in range(5):
|
||||
print((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
|
||||
I_values_r2.append((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
|
||||
|
||||
print(f"Таблиця {t}, стовпець 2: Imin = {min(I_values_r2)}; Mт = {M_and_beta[I_values_r2.index(min(I_values_r2))][0] - min(I_values_r2)*M_and_beta[I_values_r2.index(min(I_values_r2))][1]}")
|
||||
|
Loading…
x
Reference in New Issue
Block a user