physics-labs-collection/labs/51/processor.py

188 lines
11 KiB
Python
Raw Normal View History

2023-03-26 11:38:51 +03:00
import math
2023-03-19 22:14:11 +02:00
import sys
import os
# defining some constants
r = 32 # round to n digits
2023-03-19 22:14:11 +02:00
column_width = 11 # set column width of final table
# checking if the file is provided correctly
if len(sys.argv) != 2:
print(f"Please, provide data file\nUsage example: python3 {sys.argv[0]} sample_file.txt")
sys.exit(1)
if not os.path.exists(sys.argv[1]):
print("File does not exist")
sys.exit(1)
# defining functions
def avg(a):
2023-03-26 11:38:51 +03:00
#print(a)
2023-03-19 22:14:11 +02:00
return sum(a) / len(a)
def get_max_len(a):
return max(list(map(lambda x: len(str(x)), a)))
# reading input data from the file
possible_units = {"mass": {"kilogram": 1, "gram": 0.001}}
selected_table = 0
tables = {"1": {"r2": 0, "r1": 0, "norms": {"mass": 1}, "stats": []},
"2": {"r2": 0, "r1": 0, "norms": {"mass": 1}, "stats": []}}
with open(sys.argv[1]) as source_file:
for raw_i in source_file:
i = raw_i.rstrip("\n\r")
table_line = i.split()
if len(table_line) > 0:
if table_line[0] == "#":
if table_line[1] == "table":
selected_table = table_line[2]
elif table_line[1] == "r1":
tables[selected_table]["r1"] = float(table_line[2])
elif table_line[1] == "r2":
tables[selected_table]["r2"] = float(table_line[2])
elif table_line[1] == "set_unit":
if table_line[2] in possible_units and table_line[3] in possible_units[table_line[2]]:
tables[selected_table]["norms"][table_line[2]] = possible_units[table_line[2]][table_line[3]]
else:
print(f"Unsupported unit defined in line: '{i}'")
else:
if len(table_line) == 7:
new_data = list(map(float, table_line))
new_data[0] = round(new_data[0] * tables[selected_table]["norms"]["mass"], r)
tables[selected_table]["stats"].append(new_data)
# processing inputs
required_data = {"1": {"stats": [], "Mt": 0, "Imin": 0},
"2": {"stats": [], "Mt": 0, "Imin": 0}}
for i in tables:
for j in tables[i]['stats']:
new_line = []
new_line.append(round(j[0]*tables[i]['r1']*9.81, r))
new_line.append(round(avg(j[1:4]), r))
2023-03-26 11:38:51 +03:00
new_line.append(round(2/(tables[i]['r1']*(new_line[1]**2)), r))
2023-03-19 22:14:11 +02:00
new_line.append(round(j[0]*tables[i]['r2']*9.81, r))
2023-03-26 11:38:51 +03:00
new_line.append(round(avg(j[4:7]), r))
new_line.append(round(2/(tables[i]['r2']*(new_line[4]**2)), r))
2023-03-19 22:14:11 +02:00
required_data[i]["stats"].append(new_line)
# printing out the results
'''
for i in tables:
table_widths = [get_max_len(list(zip(tables[i]['stats']))[0]),
get_max_len(list(zip(required_data[i]['stats']))[0]),
get_max_len(list(zip(tables[i]['stats']))[1]),
get_max_len(list(zip(tables[i]['stats']))[2]),
get_max_len(list(zip(tables[i]['stats']))[3]),
get_max_len(list(zip(required_data[i]['stats']))[1]),
get_max_len(list(zip(required_data[i]['stats']))[2]),
get_max_len(list(zip(tables[i]['stats']))[0]),
get_max_len(list(zip(required_data[i]['stats']))[3]),
get_max_len(list(zip(tables[i]['stats']))[4]),
get_max_len(list(zip(tables[i]['stats']))[5]),
get_max_len(list(zip(tables[i]['stats']))[6]),
get_max_len(list(zip(required_data[i]['stats']))[4]),
get_max_len(list(zip(required_data[i]['stats']))[5]),
]
print("|".join( list(map(lambda x: str(x[0].center(x[1])), zip(["m", "Mi", "t1", "t2", "t3", "❬t❭", "βi"]*2, table_widths)))))
for j in range(len(required_data[i]['stats'])):
print("|".join( list(map(lambda x: str(x[0].center(x[1])),
zip([tables[i]['stats'][j][0],
required_data[i]['stats'][j][0],
tables[i]['stats'][j][1],
tables[i]['stats'][j][2],
tables[i]['stats'][j][3],
required_data[i]['stats'][j][1],
required_data[i]['stats'][j][2],
tables[i]['stats'][j][0],
required_data[i]['stats'][j][3],
tables[i]['stats'][j][4],
tables[i]['stats'][j][5],
tables[i]['stats'][j][6],
required_data[i]['stats'][j][4],
required_data[i]['stats'][j][5]],
table_widths))) ))
'''
for i in tables:
print(f"Table #{i}")
print("|".join( list(map(lambda x: str(x).center(11), ["m", "Mi", "t1", "t2", "t3", "❬t❭", "βi"]*2))))
for j in range(len(required_data[i]['stats'])):
print("|".join( list(map(lambda x: str(x).center(11),
[tables[i]['stats'][j][0],
required_data[i]['stats'][j][0],
tables[i]['stats'][j][1],
tables[i]['stats'][j][2],
tables[i]['stats'][j][3],
required_data[i]['stats'][j][1],
required_data[i]['stats'][j][2],
tables[i]['stats'][j][0],
required_data[i]['stats'][j][3],
tables[i]['stats'][j][4],
tables[i]['stats'][j][5],
tables[i]['stats'][j][6],
required_data[i]['stats'][j][4],
required_data[i]['stats'][j][5]])) ))
2023-03-26 11:38:51 +03:00
sigma_beta1 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[2]))) + avg(list(zip(*required_data["1"]['stats']))[2])**2), r)
sigma_beta2 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[5]))) + avg(list(zip(*required_data["1"]['stats']))[5])**2), r)
sigma_beta3 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[2]))) + avg(list(zip(*required_data["2"]['stats']))[2])**2), r)
sigma_beta4 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[5]))) + avg(list(zip(*required_data["2"]['stats']))[5])**2), r)
sigma_M1 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[0]))) + avg(list(zip(*required_data["1"]['stats']))[0])**2), r)
sigma_M2 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["1"]['stats']))[3]))) + avg(list(zip(*required_data["1"]['stats']))[3])**2), r)
sigma_M3 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[0]))) + avg(list(zip(*required_data["2"]['stats']))[0])**2), r)
sigma_M4 = round(math.sqrt(avg(list(map(lambda x: x**2, list(zip(*required_data["2"]['stats']))[3]))) + avg(list(zip(*required_data["2"]['stats']))[3])**2), r)
2023-03-26 11:38:51 +03:00
#print("σβ (1-4) (DO NOT USE):", sigma_beta1/avg(list(zip(*required_data["1"]['stats']))[2]), sigma_beta2/avg(list(zip(*required_data["1"]['stats']))[5]), sigma_beta3/avg(list(zip(*required_data["2"]['stats']))[2]), sigma_beta4/avg(list(zip(*required_data["2"]['stats']))[5]))
#print("σM (1-4) (DO NOT USE):", sigma_t1/avg(list(zip(*required_data["1"]['stats']))[0]), sigma_t2/avg(list(zip(*required_data["1"]['stats']))[3]), sigma_t3/avg(list(zip(*required_data["2"]['stats']))[0]), sigma_t4/avg(list(zip(*required_data["2"]['stats']))[3]))
print("σβ:", avg([math.sqrt(sigma_beta1), math.sqrt(sigma_beta2), math.sqrt(sigma_beta3), math.sqrt(sigma_beta4)]))
print("σM:", avg([math.sqrt(sigma_M1), math.sqrt(sigma_M2), math.sqrt(sigma_M3), math.sqrt(sigma_M4)]))
print(required_data)
'''
for t in required_data:
I_values_r1 = [(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[0], list(zip(*required_data[t]['stats']))[2])]
Mt1 = required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0] - (min(I_values_r1) * required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2])
print(f"Таблиця {t}, стовпець 1: Imin = {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0]} / {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2]} = {round(min(I_values_r1), r)}; Mт = {required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][0]} - {min(I_values_r1)}*{required_data[t]['stats'][I_values_r1.index(min(I_values_r1))][2]} = {round(Mt1, r)} (за мінімальний узято рядок {I_values_r1.index(min(I_values_r1))})")
I_values_r2 = [(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5])]
Mt2 = required_data[t]['stats'][I_values_r2.index(min(I_values_r2))][3] - (min(I_values_r2) * required_data[t]['stats'][I_values_r2.index(min(I_values_r2))][5])
print(f"Таблиця {t}, стовпець 2: Imin = {round(min(I_values_r2), r)}; Mт = {round(Mt2, r)}")
#i_min_2 = min([(i[0] / i[1]) for i in zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5])])
#print(f"Imin for {t}-2: {round(i_min_2, r)}")
'''
for t in required_data:
I_values_r1 = []
M_and_beta = list(zip(list(zip(*required_data[t]['stats']))[0], list(zip(*required_data[t]['stats']))[2]))
print(M_and_beta)
for i in range(5):
print((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
I_values_r1.append((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
print(f"Таблиця {t}, стовпець 1: Imin = {min(I_values_r1)}; Mт = {M_and_beta[I_values_r1.index(min(I_values_r1))][0] - min(I_values_r1)*M_and_beta[I_values_r1.index(min(I_values_r1))][1]}")
I_values_r2 = []
M_and_beta = list(zip(list(zip(*required_data[t]['stats']))[3], list(zip(*required_data[t]['stats']))[5]))
for i in range(5):
print((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
I_values_r2.append((M_and_beta[i+1][0] - M_and_beta[i][0]) / (M_and_beta[i+1][1] - M_and_beta[i][1]))
print(f"Таблиця {t}, стовпець 2: Imin = {min(I_values_r2)}; Mт = {M_and_beta[I_values_r2.index(min(I_values_r2))][0] - min(I_values_r2)*M_and_beta[I_values_r2.index(min(I_values_r2))][1]}")