Compare commits
3 Commits
3338a75114
...
44457b1849
Author | SHA1 | Date |
---|---|---|
|
44457b1849 | |
|
31ec6b2697 | |
|
24b62d109a |
|
@ -20,13 +20,13 @@ al = align_binary_to_left
|
|||
|
||||
|
||||
def shift_left(rg, fill_bit = 0):
|
||||
return rg[1:] + fill_bit
|
||||
return rg[1:] + str(fill_bit)
|
||||
|
||||
l = shift_left
|
||||
|
||||
|
||||
def shift_right(rg, fill_bit = 0):
|
||||
return fill_bit + rg[:-1]
|
||||
return str(fill_bit) + rg[:-1]
|
||||
|
||||
r = shift_right
|
||||
|
||||
|
@ -37,14 +37,20 @@ def sum_supplementary_codes(x, y, size):
|
|||
sum = sum_supplementary_codes
|
||||
|
||||
|
||||
def sum_supplementary_codes_with_overspill(x, y, size):
|
||||
def sum_supplementary_codes_right_align(x, y, size):
|
||||
return ar(bin(int("0b"+x, 2) + int("0b"+y, 2))[2:], size)
|
||||
|
||||
rsum = sum_supplementary_codes_right_align
|
||||
|
||||
|
||||
def sum_supplementary_codes_with_overflow(x, y, size):
|
||||
result = bin(int("0b"+x, 2) + int("0b"+y, 2))[2:]
|
||||
if len(result) > size:
|
||||
return al(result, size), '1'
|
||||
else:
|
||||
return al(result, size), '0'
|
||||
|
||||
sump = sum_supplementary_codes_with_overspill
|
||||
sump = sum_supplementary_codes_with_overflow
|
||||
|
||||
|
||||
def invert_bit(b):
|
||||
|
@ -57,3 +63,15 @@ def invert_bit(b):
|
|||
exit(1)
|
||||
|
||||
inv = invert_bit
|
||||
|
||||
|
||||
def xor(x, y):
|
||||
if len(x) == len(y):
|
||||
result = ''
|
||||
for i in zip(x, y):
|
||||
if x != y:
|
||||
result += '1'
|
||||
else:
|
||||
result += '0'
|
||||
|
||||
return result
|
||||
|
|
|
@ -24,4 +24,4 @@ for x in range(top_value):
|
|||
if len(errors) == 0:
|
||||
print("Testing finished, no miscalculations detected.\nIt's safe to use!")
|
||||
else:
|
||||
print("Testing failed with {len(errors)} errors.")
|
||||
print(f"Testing failed with {len(errors)} errors.")
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
import bitutils as bu
|
||||
|
||||
# this needs to be replaced at some point, because:
|
||||
# - it uses old notation for align operation, which contradicts with
|
||||
# modern instruction sets, thus making it easily confusable with
|
||||
# the bu.al() operation which aligns bits to the left
|
||||
def align_binary_to_right(value, size):
|
||||
if "b" in value:
|
||||
result = value.split("b")[1]
|
||||
|
@ -15,19 +21,62 @@ def multiply(n, x, y, method):
|
|||
- get just the end result of binary multiplication;
|
||||
|
||||
it takes 4 arguments:
|
||||
n - (int) base register bit depth
|
||||
n - (int) base register bit length
|
||||
x - (int) value for X operand
|
||||
y - (int) value for Y operand
|
||||
method - (int) which method to use to perform multiplication
|
||||
|
||||
it returns 2 items:
|
||||
- (list) table with step-by-step operations and descriptions
|
||||
- (str) binary representation of the result
|
||||
- (list) table with step-by-step operations and descriptions (table format
|
||||
depends on the chosen method)
|
||||
- (str) binary representation of the result (method-independant)
|
||||
|
||||
Methods fully supported: №4
|
||||
Methods fully supported:
|
||||
- №2 (passed mult-test.py with 10 bits)
|
||||
- №4 (passed mult-test.py with 12 bits)
|
||||
'''
|
||||
|
||||
if method == 4:
|
||||
if method == 2:
|
||||
# every table line has registers like so: RG1, RG3, RG2
|
||||
data_table = [[["0", "0"*(2*n), "0"*n + bu.ar(bin(y)[2:], n), bu.ar(bin(x)[2:], n), "-"]]*2]
|
||||
|
||||
# iteration number
|
||||
i = 0
|
||||
|
||||
while int('0b' + data_table[-1][-1][3], 2) != 0:
|
||||
data_table.append([])
|
||||
i += 1
|
||||
|
||||
if data_table[-2][-1][3][-1] == "1":
|
||||
data_table[-1].append([
|
||||
i,
|
||||
#al(bin(int("0b"+data_table[-2][-1][1], 2) + int("0b"+data_table[-2][-1][2], 2))[-(2*n+1):], 2*n+1), # RG1 + RG3
|
||||
bu.rsum(data_table[-2][-1][1], data_table[-2][-1][2], 2*n),
|
||||
data_table[-2][-1][2],
|
||||
data_table[-2][-1][3],
|
||||
"RG1+RG3"
|
||||
])
|
||||
|
||||
data_table[-1].append([
|
||||
i,
|
||||
data_table[-1][-1][1],
|
||||
bu.l(data_table[-1][-1][2]), # l(RG3).0
|
||||
bu.r(data_table[-1][-1][3]), # 0.r(RG2)
|
||||
"0.r(RG2), l(RG3).0"
|
||||
])
|
||||
|
||||
else:
|
||||
data_table[-1].append([
|
||||
i,
|
||||
data_table[-2][-1][1],
|
||||
bu.l(data_table[-2][-1][2]), # l(RG3).0
|
||||
bu.r(data_table[-2][-1][3]), # 0.r(RG2)
|
||||
"0.r(RG2), l(RG3).0"
|
||||
])
|
||||
|
||||
return data_table, data_table[-1][-1][1]
|
||||
|
||||
elif method == 4:
|
||||
# every table line has registers like so: RG1, RG3, RG2
|
||||
data_table = [[["0", "0"*(2*n+1), "0" + al(bin(y)[2:], n) + "0"*n, al(bin(x)[2:], n), "-"]]*2]
|
||||
|
||||
|
@ -66,6 +115,19 @@ def multiply(n, x, y, method):
|
|||
|
||||
return data_table, data_table[-1][-1][1][:-1]
|
||||
|
||||
def table_to_text(dt):
|
||||
from lib.prettytable import PrettyTable
|
||||
pt = PrettyTable()
|
||||
pt.field_names = ["Iteration", "RG1", "RG3", "RG2", "Operations"]
|
||||
|
||||
for i in dt:
|
||||
for j in range(len(i)):
|
||||
if j+1 == len(i):
|
||||
pt.add_row(i[j], divider = True)
|
||||
else:
|
||||
pt.add_row(i[j])
|
||||
|
||||
return pt.get_string()
|
||||
|
||||
if __name__ == "__main__":
|
||||
# a fully functional reference
|
||||
|
@ -86,7 +148,8 @@ if __name__ == "__main__":
|
|||
method = int(input("Method: "))
|
||||
|
||||
dt, result = multiply(n, x, y, method)
|
||||
|
||||
|
||||
'''
|
||||
from lib.prettytable import PrettyTable
|
||||
pt = PrettyTable()
|
||||
pt.field_names = ["Iteration", "RG1", "RG3", "RG2", "Operations"]
|
||||
|
@ -99,4 +162,6 @@ if __name__ == "__main__":
|
|||
pt.add_row(i[j])
|
||||
|
||||
print(pt)
|
||||
'''
|
||||
print(table_to_text(dt))
|
||||
print(f"Result: {result}")
|
||||
|
|
Loading…
Reference in New Issue