fix division issues and add full support for both division methods

This commit is contained in:
dymik739 2023-05-09 22:36:25 +03:00
parent a04084d8e3
commit 49dbc9a164
2 changed files with 82 additions and 17 deletions

View File

@ -6,7 +6,17 @@ def align_binary_to_right(value, size):
return result[-size:].rjust(size, "0")
al = align_binary_to_right
ar = align_binary_to_right
def align_binary_to_left(value, size):
if "b" in value:
result = value.split("b")[1]
else:
result = str(value)
return result[-size:].ljust(size, "0")
al = align_binary_to_left
def shift_left(rg, fill_bit = 0):
@ -27,6 +37,16 @@ def sum_supplementary_codes(x, y, size):
sum = sum_supplementary_codes
def sum_supplementary_codes_with_overspill(x, y, size):
result = bin(int("0b"+x, 2) + int("0b"+y, 2))[2:]
if len(result) > size:
return al(result, size), '1'
else:
return al(result, size), '0'
sump = sum_supplementary_codes_with_overspill
def invert_bit(b):
if b == '0':
return '1'

View File

@ -3,26 +3,16 @@ import bitutils as bu
def divide(n, int_x, int_y, method):
if method == 1:
# getting binary values
x = bu.al(bin(int_x)[2:], n)
y = bu.al(bin(int_y)[2:], n)
x = bu.ar(bin(int_x)[2:], n)
y = bu.ar(bin(int_y)[2:], n)
# getting the inverse of X
x_inv = ''
invert = False
for i in x[::-1]:
if invert:
x_inv += bu.inv(i)
else:
x_inv += i
if i == '1':
invert = True
x_inv = x_inv[::-1]
# getting the supplementary code of X
y_inv = "".join([bu.inv(i) for i in y]) # invert
y_inv = bu.sum(y_inv, '1', n) # +1
# writing startup register values
# registers order: RG3, RG2, RG1
rg_table = [[['start', '1'*(n-1), y, x, '-'], ['start', '1'*(n-1), y, x_inv, '-']]]
rg_table = [[['start', '1'*(n-1), x, y, '-'], ['start', '1'*(n-1), x, y_inv, '-']]]
# iterations counter
i = 0
@ -58,6 +48,61 @@ def divide(n, int_x, int_y, method):
return rg_table, rg_table[-1][-1][1][1:]
elif method == 2:
# getting binary values
x = '0' + bu.al(bin(int_x)[2:], 2*n)
y = '0' + bu.al(bin(int_y)[2:], 2*n)
# writing startup register values
# registers order: RG3, RG2, RG1
rg_table = [[['start', '1'*(n+1), x, y, '-']]]
# iterations counter
i = 0
while rg_table[-1][-1][1][0] != '0':
i += 1
rg_table.append([])
if rg_table[-2][-1][2][0] == '1':
new_rg2, p = bu.sump(rg_table[-2][-1][2], rg_table[-2][0][3], 2*n+1)
rg_table[-1].append([
i,
bu.l(rg_table[-2][-1][1], p), # l(RG3).SM(p)
new_rg2, # RG2 := RG2 + RG1
bu.r(rg_table[-2][0][3], '0'),
"RG2 := RG2 + RG1\n" \
"RG1 := 0.r(RG1)\n" \
"RG3 := l(RG3).SM(p)"
])
else:
y_sup = ''
invert = False
for r in rg_table[-2][0][3][::-1]:
if invert:
y_sup += bu.inv(r)
else:
y_sup += r
if r == '1':
invert = True
y_sup = y_sup[::-1]
new_rg2, p = bu.sump(rg_table[-2][-1][2], y_sup, 2*n+1)
rg_table[-1].append([
i,
bu.l(rg_table[-2][-1][1], p), # copy previous value
new_rg2, # RG2 := RG2 - RG1
bu.r(rg_table[-2][0][3], '0'),
"RG2 := RG2 - !RG1 + D\n" \
"RG1 := 0.r(RG1)\n" \
"RG3 := l(RG3).SM(p)"
])
return rg_table, rg_table[-1][-1][1][1:]
if __name__ == "__main__":
# a fully functional reference