12 KiB
binaryCalculatorPrototype
This is a Python language prototype for a binary calculator to be used in Computer Arithmetics lab works for first-year students studying Computer Engineering at KPI.
Requirements
The user must have installed:
- python 3 (for the calculator itself);
- git (to clone the repository for installation);
Installation
To install the calculator just clone the repository locally:
git clone -b master http://139.162.162.130:3000/Rhinemann/binaryCalculatorPrototype.git
User instructions
Start the calculator using the following command:
python3 main.py
After that you must input the binary number as your first and second operands, as such:
Enter first operand: 110101
Enter second operand: 110
Note that you can't input any digit other than 0 or 1 into the operands:
Enter first operand: 234123
[ERROR] The first operand may contain only 1-s and 0-s!
Enter first operand: 12314
[ERROR] The first operand may contain only 1-s and 0-s!
Enter first operand: 1234123
[ERROR] The first operand may contain only 1-s and 0-s!
After properly inputting the operands properly, you will be presented with such prompt:
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) >
(110101 000110)
are the operands you have input. You may now choose the operations performed on the operands as such:
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > a
Sum: 111011
Carry: 0
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > s
Subtraction: 101111
Carry: 1
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > m
Choose method to use (1-4):
(110101 000110) m > 1
Multiplication (method 1):
+------+--------+--------+--------+-----+----------------------+
| iter | RG1 | RG2 | RG3 | CT | MicroOperations |
+------+--------+--------+--------+-----+----------------------+
| 0 | 000000 | 110101 | 000110 | 110 | - |
+------+--------+--------+--------+-----+----------------------+
| 1 | 000110 | 110101 | 000110 | 110 | RG1 := RG1 + RG3 |
| 1 | 000011 | 011010 | 000110 | 101 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 2 | 000001 | 101101 | 000110 | 100 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 3 | 000111 | 101101 | 000110 | 100 | RG1 := RG1 + RG3 |
| 3 | 000011 | 110110 | 000110 | 011 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 4 | 000001 | 111011 | 000110 | 010 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 5 | 000111 | 111011 | 000110 | 010 | RG1 := RG1 + RG3 |
| 5 | 000011 | 111101 | 000110 | 001 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 6 | 001001 | 111101 | 000110 | 001 | RG1 := RG1 + RG3 |
| 6 | 000100 | 111110 | 000110 | 000 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
Result: 000100111110
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > d
Choose method to use (1-2):
(110101 000110) d > 1
Division (method 1):
+------+---------+----------+----------+-----------------------+
| iter | RG3 | RG2 | RG1 | MicroOperations |
+------+---------+----------+----------+-----------------------+
| 0 | 1111111 | 00110101 | 00000110 | - |
+------+---------+----------+----------+-----------------------+
| 1 | 1111111 | 00101111 | 00000110 | RG2 := RG2 - RG1 |
| 1 | 1111111 | 01011110 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 2 | 1111111 | 01011000 | 00000110 | RG2 := RG2 - RG1 |
| 2 | 1111111 | 10110000 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 3 | 1111111 | 10110110 | 00000110 | RG2 := RG2 + RG1 |
| 3 | 1111110 | 01101100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 4 | 1111110 | 01100110 | 00000110 | RG2 := RG2 - RG1 |
| 4 | 1111101 | 11001100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 5 | 1111101 | 11010010 | 00000110 | RG2 := RG2 + RG1 |
| 5 | 1111010 | 10100100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 6 | 1111010 | 10101010 | 00000110 | RG2 := RG2 + RG1 |
| 6 | 1110100 | 01010100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 7 | 1110100 | 01001110 | 00000110 | RG2 := RG2 - RG1 |
| 7 | 1101001 | 10011100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 8 | 1101001 | 10100010 | 00000110 | RG2 := RG2 + RG1 |
| 8 | 1010010 | 01000100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 9 | 1010010 | 00111110 | 00000110 | RG2 := RG2 - RG1 |
| 9 | 0100101 | 01111100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
Result: 100101
The results of the operations will be displayed, and you will get prompted for the next operation to perform. Note the results of previous operations don't impact the operands, therefore you can't plug your previous results into the calculator without restarting the program!
Also, as a quality of life feature, you can chain multiple operations in one prompt as such:
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > asm1d1
Sum: 111011
Carry: 0
Subtraction: 101111
Carry: 1
Multiplication (method 1):
+------+--------+--------+--------+-----+----------------------+
| iter | RG1 | RG2 | RG3 | CT | MicroOperations |
+------+--------+--------+--------+-----+----------------------+
| 0 | 000000 | 110101 | 000110 | 110 | - |
+------+--------+--------+--------+-----+----------------------+
| 1 | 000110 | 110101 | 000110 | 110 | RG1 := RG1 + RG3 |
| 1 | 000011 | 011010 | 000110 | 101 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 2 | 000001 | 101101 | 000110 | 100 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 3 | 000111 | 101101 | 000110 | 100 | RG1 := RG1 + RG3 |
| 3 | 000011 | 110110 | 000110 | 011 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 4 | 000001 | 111011 | 000110 | 010 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 5 | 000111 | 111011 | 000110 | 010 | RG1 := RG1 + RG3 |
| 5 | 000011 | 111101 | 000110 | 001 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 6 | 001001 | 111101 | 000110 | 001 | RG1 := RG1 + RG3 |
| 6 | 000100 | 111110 | 000110 | 000 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
Result: 000100111110
Division (method 1):
+------+---------+----------+----------+-----------------------+
| iter | RG3 | RG2 | RG1 | MicroOperations |
+------+---------+----------+----------+-----------------------+
| 0 | 1111111 | 00110101 | 00000110 | - |
+------+---------+----------+----------+-----------------------+
| 1 | 1111111 | 00101111 | 00000110 | RG2 := RG2 - RG1 |
| 1 | 1111111 | 01011110 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 2 | 1111111 | 01011000 | 00000110 | RG2 := RG2 - RG1 |
| 2 | 1111111 | 10110000 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 3 | 1111111 | 10110110 | 00000110 | RG2 := RG2 + RG1 |
| 3 | 1111110 | 01101100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 4 | 1111110 | 01100110 | 00000110 | RG2 := RG2 - RG1 |
| 4 | 1111101 | 11001100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 5 | 1111101 | 11010010 | 00000110 | RG2 := RG2 + RG1 |
| 5 | 1111010 | 10100100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 6 | 1111010 | 10101010 | 00000110 | RG2 := RG2 + RG1 |
| 6 | 1110100 | 01010100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 7 | 1110100 | 01001110 | 00000110 | RG2 := RG2 - RG1 |
| 7 | 1101001 | 10011100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 8 | 1101001 | 10100010 | 00000110 | RG2 := RG2 + RG1 |
| 8 | 1010010 | 01000100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 9 | 1010010 | 00111110 | 00000110 | RG2 := RG2 - RG1 |
| 9 | 0100101 | 01111100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
Result: 100101
So that multiple operations are performed on the same operands without the need for multiple prompts.