from collections import deque from typing_extensions import Self class BasicRegister: """ The BasicRegister represents a hardware register capable of manipulating multiple bits at a time. :param deque[bool] memory: The bits stored inside the register. """ def __init__(self, memory: list[bool]): self.memory: deque[bool] = deque(memory) def __repr__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __str__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __len__(self) -> int: return len(self.memory) def adjusted_by_size(self, resulting_size: int) -> Self: """ Adjusts a register to a given size. :param int resulting_size: The size of the resulting register. :return: A register of a specified size. :rtype: BasicRegister """ current_memory_size: int = len(self.memory) return BasicRegister( [False] * max(resulting_size - current_memory_size, 0) + list(self.memory)[-resulting_size:] ) def reverse(self): self.memory = deque([not value for value in self.memory]) def left_shift(self, digit_to_fill: bool = False, steps_shifted: int = 1) -> deque[bool]: self.memory.extend([digit_to_fill] * steps_shifted) shifted_radices: deque[bool] = deque([self.memory.popleft() for _i in range(steps_shifted)]) return shifted_radices def right_shift(self, digit_to_fill: bool = False, steps_shifted: int = 1) -> deque[bool]: self.memory.extendleft([digit_to_fill] * steps_shifted) shifted_radices: deque[bool] = deque([self.memory.pop() for _i in range(steps_shifted)]) return shifted_radices def get_memory(variable_name: str) -> list[bool]: """ Reads user input to be used as a memory array. :param str variable_name: The name to be displayed in the input line. :return: A list of boolean values read from user. :rtype: list[bool] """ while True: input_chars: list[str] = list(input(f"Enter {variable_name}: ")) if all(character in ["0", "1"] for character in input_chars): return [True if character == "1" else False for character in input_chars] else: print(f"[ERROR] The {variable_name} may contain only 1-s and 0-s!") def binary_sum(first_term: BasicRegister, second_term: BasicRegister, return_remainder: bool = False) \ -> BasicRegister or tuple[BasicRegister, int]: """ Sums two registers' values. :param BasicRegister first_term: First register. :param BasicRegister second_term: Second register. :param bool return_remainder: True to return the tuple, False to return just the register. :return: Register containing the sum or the tuple containing the register and carried radix. :rtype: BasicRegister | tuple[BasicRegister, int] """ result = BasicRegister([False] * len(first_term)) carry = False for i in range(len(first_term) - 1, 0, -1): current_bit_sum = first_term.memory[i] + second_term.memory[i] + carry carry = bool(current_bit_sum & 2) result.memory[i] = bool(current_bit_sum & 1) final_bit_sum = first_term.memory[0] + second_term.memory[0] + carry result.memory[0] = bool(final_bit_sum & 1) if return_remainder: final_carry = bool(final_bit_sum & 2) return result, final_carry else: return result def binary_subtraction_1_complement(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: second_term.reverse() result: BasicRegister final_carry: bool result, final_carry = binary_sum(first_term, second_term, True) if final_carry: return binary_sum(result, BasicRegister([True])) else: result.reverse() return result def align_registers(first_register: BasicRegister, second_register: BasicRegister) \ -> tuple[BasicRegister, BasicRegister]: size_a = len(first_register) size_b = len(second_register) required_size = max(size_a, size_b) a = first_register b = second_register if size_a != size_b: a = a.adjusted_by_size(required_size) b = b.adjusted_by_size(required_size) return a, b