from collections import deque from typing import Tuple, List, Any from typing_extensions import Self from lib.prettytable import PrettyTable class BasicRegister: """ The BasicRegister represents a hardware register capable of manipulating multiple bits at a time. :param deque[bool] memory: The bits stored inside the register. """ def __init__(self, memory: deque[bool]): self.memory: deque[bool] = memory def __repr__(self) -> str: return "".join([str(int(value)) for value in self.memory]) def __str__(self) -> str: return "".join([str(int(value)) for value in self.memory]) def __len__(self) -> int: return len(self.memory) def adjusted_by_size(self, resulting_size: int) -> Self: """ Adjusts a register to a given size. :param int resulting_size: The size of the resulting register. :return: A register of a specified size. :rtype: BasicRegister """ current_memory_size: int = len(self.memory) return BasicRegister( deque([False] * max(resulting_size - current_memory_size, 0) + list(self.memory)[-resulting_size:]) ) def negate(self): """ Performs logical negation on the register. """ self.memory = deque([not value for value in self.memory]) def left_shift(self, shift_in_value: bool = False, bits_shifted: int = 1) -> deque[bool]: """ Shifts the register to the left by a specified number of steps. :param bool shift_in_value: The value that shifts inside the freed space. :param int bits_shifted: The number of bits by which the register is shifted. :return: The bits shifted outside the register. :rtype: deque[bool] """ self.memory.extend([shift_in_value] * bits_shifted) shifted_bits: deque[bool] = deque([self.memory.popleft() for _i in range(bits_shifted)]) return shifted_bits def right_shift(self, shift_in_value: bool = False, bits_shifted: int = 1) -> deque[bool]: """ Shifts the register to the right by a specified number of steps :param bool shift_in_value: The value that shifts inside the freed space. :param int bits_shifted: The number of bits by which the register is shifted. :return: The bits shifted outside the register. :rtype: deque[bool] """ self.memory.extendleft([shift_in_value] * bits_shifted) shifted_bits: deque[bool] = deque([self.memory.pop() for _i in range(bits_shifted)]) return shifted_bits class Counter(BasicRegister): """ The Counter represents a hardware register specifically designed for countdowns. :param int value: Initial numeric value this Counter holds. """ def __init__(self, value: int): # memory: deque[bool] = deque([i == "1" for i in bin(value)[2:]]) super().__init__(deque([i == "1" for i in bin(value)[2:]])) # self.memory: deque[bool] = deque([i == "1" for i in bin(value)[2:]]) def __repr__(self) -> str: return "".join([str(int(value)) for value in self.memory]) def __str__(self) -> str: return "".join([str(int(value)) for value in self.memory]) def __len__(self) -> int: return len(self.memory) def decrement(self): self.memory = binary_subtraction(self, BasicRegister(deque([False] * (len(self.memory) - 1) + [True]))).memory def non_zero(self) -> bool: return any(self.memory) def get_memory(variable_name: str) -> deque[bool]: """ Reads user input to be used as a memory array. :param str variable_name: The name to be displayed in the input line. :return: A list of boolean values read from user. :rtype: list[bool] """ while True: input_chars: list[str] = list(input(f"Enter {variable_name}: ")) if all(character in ["0", "1"] for character in input_chars): return deque([True if character == "1" else False for character in input_chars]) else: print(f"[ERROR] The {variable_name} may contain only 1-s and 0-s!") def binary_sum_with_carry(first_term: BasicRegister, second_term: BasicRegister) -> tuple[BasicRegister, int]: """ Sums two registers' values and keeps the carry-out. :param BasicRegister first_term: First register. :param BasicRegister second_term: Second register. :return: Register containing the sum and the carry-out bit. :rtype: tuple[BasicRegister, int] """ result_term = BasicRegister(deque([False] * len(first_term))) carry = False for i in range(len(first_term) - 1, -1, -1): current_bit_sum = first_term.memory[i] + second_term.memory[i] + carry carry = bool(current_bit_sum & 2) result_term.memory[i] = bool(current_bit_sum & 1) return result_term, carry def binary_sum(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Sums two terms containing binary numbers. :param BasicRegister first_term: First register to add. :param BasicRegister second_term: Second register to add. :return: Register containing the sum. :rtype: BasicRegister """ return binary_sum_with_carry(first_term, second_term)[0] def binary_subtraction(minuend: BasicRegister, subtrahend: BasicRegister) -> BasicRegister: """ Subtracts the second term from the first in binary using ones' complement. :param BasicRegister minuend: Register to subtract from. :param BasicRegister subtrahend: Register to subtract by. :return: Register containing the difference. :rtype: BasicRegister """ subtrahend = BasicRegister(subtrahend.memory) subtrahend.negate() difference: BasicRegister final_carry: bool difference, final_carry = binary_sum_with_carry(minuend, subtrahend) if final_carry: return binary_sum(difference, BasicRegister(deque([False] * (len(difference) - 1) + [True]))) else: difference.negate() return difference def binary_subtraction_second_complement(minuend: BasicRegister, subtrahend: BasicRegister) \ -> tuple[BasicRegister, bool]: """ Subtracts the second term from the first in binary using seconds' complement. :param BasicRegister minuend: Register to subtract from. :param BasicRegister subtrahend: Register to subtract by. :return: Register containing the difference. :rtype: BasicRegister """ subtrahend = BasicRegister(subtrahend.memory) subtrahend.negate() subtrahend = binary_sum(*align_registers(subtrahend, BasicRegister([True]))) difference: BasicRegister final_carry: bool difference, final_carry = binary_sum_with_carry(minuend, subtrahend) return difference, final_carry def align_registers(*registers: BasicRegister) -> tuple[BasicRegister, ...]: """ Aligns registers by the length of the bigger one. :param BasicRegister registers: Registers to align. :return: Aligned registers. :rtype: tuple[BasicRegister, ...] """ required_size: int = max(map(len, registers)) return tuple(reg.adjusted_by_size(required_size) for reg in registers) def format_device_state_table(table) -> str: pt = PrettyTable() pt.field_names = table[0] for block in table[1:]: for line in block[:-1]: pt.add_row(line) pt.add_row(block[-1], divider=True) return pt.get_string() def binary_multiplication_method_1(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Multiplies two terms containing binary numbers using first method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister(deque([False] * n)) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister(second_term.memory) ct = Counter(n) data_table = [["iter", "RG1", "RG2", "RG3", "CT", "MicroOperations"]] i = 0 data_table.append([]) data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, ct, "-"]))) while ct.non_zero(): i += 1 data_table.append([]) if rg2.memory[n-1]: rg1 = binary_sum(rg1, rg3) data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, ct, "RG1 := RG1 + RG3"]))) rg2.right_shift(rg1.memory[n-1]) rg1.right_shift() ct.decrement() data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, ct, "RG2 := RG1[1].r(RG2)\nRG1 := 0.r(RG1)\nCT := CT - 1"]))) return BasicRegister(rg1.memory + rg2.memory), data_table def binary_multiplication_method_2(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Multiplies two terms containing binary numbers using second method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister(deque([False] * (2*n))) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister(deque([False] * n + list(second_term.memory))) i = 0 data_table = [["iter", "RG1", "RG2", "RG3", "MicroOperations"], []] data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "-"]))) while any(rg2.memory): i += 1 data_table.append([]) if rg2.memory[n-1]: rg1 = binary_sum(rg1, rg3) data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "RG1 := RG1 + RG3"]))) rg2.right_shift() rg3.left_shift() data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "RG2 := 0.r(RG2)\nRG3 := l(RG3).0"]))) return rg1, data_table def binary_multiplication_method_3(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Multiplies two terms containing binary numbers using third method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) data_table = [["iter", "RG2", "RG1", "RG3", "CT", "MicroOperations"]] rg1 = BasicRegister(deque([False] * n)) rg2 = BasicRegister(first_term.memory + deque([False])) rg3 = BasicRegister(deque([False] * (n+1)) + second_term.memory) ct = Counter(n) i = 0 data_table.append([]) data_table[-1].append(list(map(str, [i, rg2, rg1, rg3, ct, "-"]))) while ct.non_zero(): i += 1 data_table.append([]) if rg2.memory[0]: result: list[bool] = list(binary_sum(BasicRegister(rg2.memory + rg1.memory), rg3).memory) rg2 = BasicRegister(deque(result[:n+1])) rg1 = BasicRegister(deque(result[n+1:])) data_table[-1].append(list(map(str, [i, rg2, rg1, rg3, ct, "RG2.RG1 := RG2.RG1 + RG3"]))) rg2.left_shift(rg1.memory[0]) rg1.left_shift() ct.decrement() data_table[-1].append(list(map(str, [i, rg2, rg1, rg3, ct, "RG2.RG1 := l(RG2.RG1).0\nCT := CT - 1"]))) return BasicRegister(deque(list(rg2.memory + rg1.memory)[:-1])), data_table def binary_multiplication_method_4(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Multiplies two terms containing binary numbers using fourth method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister(deque([False] * (2*n+1))) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister(deque([False]) + second_term.memory + deque([False] * n)) data_table = [["iter", "RG1", "RG2", "RG3", "MicroOperations"]] i = 0 data_table.append([]) data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "-"]))) while any(rg2.memory): i += 1 data_table.append([]) if rg2.memory[0]: rg1 = binary_sum(rg1, rg3) data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "RG1 := RG1 + RG3"]))) rg2.left_shift() rg3.right_shift() data_table[-1].append(list(map(str, [i, rg1, rg2, rg3, "RG2 := l(RG2).0\nRG3 := 0.r(RG3)"]))) return BasicRegister(deque(list(rg1.memory)[:-1])), data_table def binary_division_method_1(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Divides first term by the second term containing binary numbers using first method. :param: BasicRegister first_term: Register being divided. :param: BasicRegister second_term: Register being divided by. :return: Register containing the division result. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister(deque([False, False]) + second_term.memory) rg2 = BasicRegister(deque([False, False]) + first_term.memory) rg3 = BasicRegister(deque([True] * (n+1))) data_table = [["iter", "RG3", "RG2", "RG1", "MicroOperations"]] i = 0 data_table.append([]) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "-"]))) while rg3.memory[0]: i += 1 data_table.append([]) if rg2.memory[0]: rg2 = binary_sum(rg2, rg1) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "RG2 := RG2 + RG1"]))) else: rg2, _ = binary_subtraction_second_complement(rg2, rg1) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "RG2 := RG2 - RG1"]))) rg3.left_shift(not rg2.memory[0]) rg2.left_shift() data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, f"RG3 := l(RG3).!RG2[{n+2}]\nRG2 := l(RG2).0"]))) return BasicRegister(deque(list(rg3.memory)[1:])), data_table def binary_division_method_2(first_term: BasicRegister, second_term: BasicRegister) \ -> tuple[BasicRegister, list[list[str]]]: """ Divides first term by the second term containing binary numbers using second method. :param: BasicRegister first_term: Register being divided. :param: BasicRegister second_term: Register being divided by. :return: Register containing the division result. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister(deque([False]) + second_term.memory + deque([False]*n)) rg2 = BasicRegister(deque([False]) + first_term.memory + deque([False]*n)) rg3 = BasicRegister(deque([True] * (n+1))) data_table = [["iter", "RG3", "RG2", "RG1", "MicroOperations"]] i = 0 carry = False data_table.append([]) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "-"]))) while rg3.memory[0]: i += 1 data_table.append([]) if rg2.memory[0]: rg2, carry = binary_sum_with_carry(rg2, rg1) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "RG2 := RG2 + RG1"]))) else: rg2, carry = binary_subtraction_second_complement(rg2, rg1) data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, "RG2 := RG2 - RG1"]))) rg3.left_shift(carry) rg1.right_shift() data_table[-1].append(list(map(str, [i, rg3, rg2, rg1, f"RG3 := l(RG3).SM[p]\nRG1 := 0.r(RG1)"]))) return BasicRegister(deque(list(rg3.memory)[1:])), data_table