from collections import deque from typing_extensions import Self class BasicRegister: """ The BasicRegister represents a hardware register capable of manipulating multiple bits at a time. :param deque[bool] memory: The bits stored inside the register. """ def __init__(self, memory: list[bool]): self.memory: deque[bool] = deque(memory) def __repr__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __str__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __len__(self) -> int: return len(self.memory) def adjusted_by_size(self, resulting_size: int) -> Self: """ Adjusts a register to a given size. :param int resulting_size: The size of the resulting register. :return: A register of a specified size. :rtype: BasicRegister """ current_memory_size: int = len(self.memory) return BasicRegister( [False] * max(resulting_size - current_memory_size, 0) + list(self.memory)[-resulting_size:] ) def reverse(self): """ Performs a logical negation on the register. """ self.memory = deque([not value for value in self.memory]) def left_shift(self, shift_in_value: bool = False, bits_shifted: int = 1) -> deque[bool]: """ Shifts the register to the left by a specified number of steps :param bool shift_in_value: The value that shifts inside the freed space. :param int bits_shifted: The number of bits by which the register is shifted. :return: The bits shifted outside the register. :rtype: deque[bool] """ self.memory.extend([shift_in_value] * bits_shifted) shifted_bits: deque[bool] = deque([self.memory.popleft() for _i in range(bits_shifted)]) return shifted_bits def right_shift(self, shift_in_value: bool = False, bits_shifted: int = 1) -> deque[bool]: """ Shifts the register to the right by a specified number of steps :param bool shift_in_value: The value that shifts inside the freed space. :param int bits_shifted: The number of bits by which the register is shifted. :return: The bits shifted outside the register. :rtype: deque[bool] """ self.memory.extendleft([shift_in_value] * bits_shifted) shifted_bits: deque[bool] = deque([self.memory.pop() for _i in range(bits_shifted)]) return shifted_bits class Counter: """ The Counter represents a hardware register specifically designed for countdowns. :param int value: Initial numeric value this Counter holds. """ def __init__(self, value: int): self.memory: deque[bool] = deque([i == "1" for i in bin(value)[2:]]) def __repr__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __str__(self) -> str: return f"Memory: {[int(value) for value in self.memory]}" def __len__(self) -> int: return len(self.memory) def decrement(self): self.memory = binary_subtraction(self, BasicRegister([False] * (len(self.memory) - 1) + [True])).memory def non_zero(self) -> bool: return any(self.memory) def get_memory(variable_name: str) -> list[bool]: """ Reads user input to be used as a memory array. :param str variable_name: The name to be displayed in the input line. :return: A list of boolean values read from user. :rtype: list[bool] """ while True: input_chars: list[str] = list(input(f"Enter {variable_name}: ")) if all(character in ["0", "1"] for character in input_chars): return [True if character == "1" else False for character in input_chars] else: print(f"[ERROR] The {variable_name} may contain only 1-s and 0-s!") def binary_sum_with_carry(first_term: BasicRegister, second_term: BasicRegister) -> tuple[BasicRegister, int]: """ Sums two registers' values and keeps the carry-out. :param BasicRegister first_term: First register. :param BasicRegister second_term: Second register. :return: Register containing the sum and the carry-out bit. :rtype: tuple[BasicRegister, int] """ result_term = BasicRegister([False] * len(first_term)) carry = False for i in range(len(first_term) - 1, 0, -1): current_bit_sum = first_term.memory[i] + second_term.memory[i] + carry carry = bool(current_bit_sum & 2) result_term.memory[i] = bool(current_bit_sum & 1) final_bit_sum = first_term.memory[0] + second_term.memory[0] + carry final_carry = bool(final_bit_sum & 2) result_term.memory[0] = bool(final_bit_sum & 1) return result_term, final_carry def binary_sum(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Sums two terms containing binary numbers. :param BasicRegister first_term: First register to add. :param BasicRegister second_term: Second register to add. :return: Register containing the sum. :rtype: BasicRegister """ return binary_sum_with_carry(first_term, second_term)[0] def binary_subtraction(minuend: BasicRegister, subtrahend: BasicRegister) -> BasicRegister: """ Subtracts the second term from the first in binary using ones' complement. :param BasicRegister minuend: Register to subtract from. :param BasicRegister subtrahend: Register to subtract by. :return: Register containing the difference. :rtype: BasicRegister """ subtrahend.reverse() difference: BasicRegister final_carry: bool difference, final_carry = binary_sum_with_carry(minuend, subtrahend) if final_carry: return binary_sum(difference, BasicRegister([False] * (len(difference) - 1) + [True])) else: difference.reverse() return difference # def align_registers(first_register: BasicRegister, second_register: BasicRegister) \ # -> tuple[BasicRegister, BasicRegister]: # """ # Aligns two registers by the length of the bigger one. # # :param BasicRegister first_register: # :param BasicRegister second_register: # # :return: # :rtype: tuple[BasicRegister, BasicRegister] # """ # first_size = len(first_register) # second_size = len(second_register) # # required_size = max(first_size, second_size) # # if first_size != second_size: # return first_register.adjusted_by_size(required_size), second_register.adjusted_by_size(required_size) # else: # return first_register, second_register def align_registers(*registers: BasicRegister) -> tuple[BasicRegister, ...]: """ Aligns registers by the length of the bigger one. :param BasicRegister registers: Registers to align. :return: Aligned registers. :rtype: tuple[BasicRegister, ...] """ required_size: int = max(map(len, registers)) return tuple(reg.adjusted_by_size(required_size) for reg in registers) def binary_multiplication_method_1(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Multiplies two terms containing binary numbers using first method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister([False] * n) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister(second_term.memory) ct = Counter(n) while ct.non_zero(): if rg2.memory[n-1]: rg1 = binary_sum(rg1, rg3) rg2.right_shift(rg1.memory[n-1]) rg1.right_shift() ct.decrement() return BasicRegister(list(rg1.memory) + list(rg2.memory)) def binary_multiplication_method_2(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Multiplies two terms containing binary numbers using second method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister([False] * (2*n)) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister([False] * n + list(second_term.memory)) while any(rg2.memory): if rg2.memory[n-1]: rg1 = binary_sum(rg1, rg3) rg2.right_shift() rg3.left_shift() return rg1 def binary_multiplication_method_3(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Multiplies two terms containing binary numbers using third method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister([False] * n) rg2 = BasicRegister(list(first_term.memory) + [False]) rg3 = BasicRegister([False] * (n+1) + list(second_term.memory)) ct = Counter(n) while ct.non_zero(): if rg2.memory[0]: result: list[bool] = list(binary_sum(BasicRegister(rg2.memory + rg1.memory), rg3).memory) rg2 = BasicRegister(result[:n+1]) rg1 = BasicRegister(result[n+1:]) rg2.left_shift(rg1.memory[0]) rg1.left_shift() ct.decrement() return BasicRegister((list(rg2.memory) + list(rg1.memory))[:-1]) def binary_multiplication_method_4(first_term: BasicRegister, second_term: BasicRegister) -> BasicRegister: """ Multiplies two terms containing binary numbers using fourth method. :param BasicRegister first_term: First register to multiply. :param BasicRegister second_term: Second register to multiply. :return: Register containing the product. :rtype: BasicRegister """ first_term, second_term = align_registers(first_term, second_term) n: int = len(first_term) rg1 = BasicRegister([False] * (2*n+1)) rg2 = BasicRegister(first_term.memory) rg3 = BasicRegister([False] + list(second_term.memory) + [False] * n) while any(rg2.memory): if rg2.memory[0]: rg1 = binary_sum(rg1, rg3) rg2.left_shift() rg3.right_shift() return BasicRegister(list(rg1.memory)[:-1])