README.md added Ukrainian translation.

This commit is contained in:
rhinemann 2024-01-19 21:34:00 +02:00
parent 84b533d658
commit 23112646c0
1 changed files with 266 additions and 12 deletions

278
README.md
View File

@ -1,35 +1,33 @@
# binaryCalculatorPrototype
This is a Python language prototype for a binary calculator to be used in Computer Arithmetics lab works for first-year students studying Computer Engineering at KPI.
# Requirements
# English
## Requirements
The user must have installed:
- python 3 (for the calculator itself);
- git (to clone the repository for installation);
# Installation
## Installation
To install the calculator just clone the repository locally:
```
git clone -b master http://139.162.162.130:3000/Rhinemann/binaryCalculatorPrototype.git
```
# User instructions
## User instructions
Start the calculator using the following command:
```
python3 main.py
```
After that you must input the binary number as your first and second operands, as such:
```
Enter first operand: 110101
Enter second operand: 110
```
Note that you can't input any digit other than 0 or 1 into the operands:
```
Enter first operand: 234123
[ERROR] The first operand may contain only 1-s and 0-s!
@ -40,15 +38,15 @@ Enter first operand: 1234123
```
After inputting the operands properly, you will be presented with such prompt:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) >
```
`(110101 000110)` are the operands you have input. You may now choose the operations performed on the operands as such:
`(110101 000110)` are the operands you have input.
You may now choose the operations performed on the operands as such:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
@ -159,10 +157,11 @@ Division (method 1):
Result: 100101
```
The results of the operations will be displayed, and you will get prompted for the next operation to perform. **Note** the results of previous operations don't impact the operands, therefore you can't plug your previous results into the calculator without restarting the program!
The results of the operations will be displayed, and you will get prompted for the next operation to perform.
**Note** the results of previous operations don't impact the operands, therefore you can't plug your previous results into the calculator without restarting the program!
Also, as a quality of life feature, you can chain multiple operations in one prompt as such:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
@ -255,4 +254,259 @@ Division (method 1):
Result: 100101
```
So that multiple operations are performed on the same operands without the need for multiple prompts.
So that multiple operations are performed on the same operands without the need for multiple prompts.
# Українська
## Вимоги
Користувач мусить мати:
- python 3 (для роботи калькулятора);
- git (щоб встановити калькулятор);
## Завантаження
Щоб встановити калькулятор пропишіть цю команду:
```
git clone -b master http://139.162.162.130:3000/Rhinemann/binaryCalculatorPrototype.git
```
## Інструкція користувачам
Калькулятор запускається цією командою:
```
python3 main.py
```
Після цього користувач має ввести два операнди у двійковій системі, наприклад:
```
Enter first operand: 110101
Enter second operand: 110
```
Варто зауважити, що не можна ввести жодну цифру крім 0 чи 1 у значення операндів:
```
Enter first operand: 234123
[ERROR] The first operand may contain only 1-s and 0-s!
Enter first operand: 12314
[ERROR] The first operand may contain only 1-s and 0-s!
Enter first operand: 1234123
[ERROR] The first operand may contain only 1-s and 0-s!
```
Після коректного введення операндів користувач побачить такий запит:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) >
```
`(110101 000110)` - це операнди введені користувачем.
Користувач тепер може обрати операції що виконуватимуться:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > a
Sum: 111011
Carry: 0
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > s
Subtraction: 101111
Carry: 1
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > m
Choose method to use (1-4):
(110101 000110) m > 1
Multiplication (method 1):
+------+--------+--------+--------+-----+----------------------+
| iter | RG1 | RG2 | RG3 | CT | MicroOperations |
+------+--------+--------+--------+-----+----------------------+
| 0 | 000000 | 110101 | 000110 | 110 | - |
+------+--------+--------+--------+-----+----------------------+
| 1 | 000110 | 110101 | 000110 | 110 | RG1 := RG1 + RG3 |
| 1 | 000011 | 011010 | 000110 | 101 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 2 | 000001 | 101101 | 000110 | 100 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 3 | 000111 | 101101 | 000110 | 100 | RG1 := RG1 + RG3 |
| 3 | 000011 | 110110 | 000110 | 011 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 4 | 000001 | 111011 | 000110 | 010 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 5 | 000111 | 111011 | 000110 | 010 | RG1 := RG1 + RG3 |
| 5 | 000011 | 111101 | 000110 | 001 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 6 | 001001 | 111101 | 000110 | 001 | RG1 := RG1 + RG3 |
| 6 | 000100 | 111110 | 000110 | 000 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
Result: 000100111110
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > d
Choose method to use (1-2):
(110101 000110) d > 1
Division (method 1):
+------+---------+----------+----------+-----------------------+
| iter | RG3 | RG2 | RG1 | MicroOperations |
+------+---------+----------+----------+-----------------------+
| 0 | 1111111 | 00110101 | 00000110 | - |
+------+---------+----------+----------+-----------------------+
| 1 | 1111111 | 00101111 | 00000110 | RG2 := RG2 - RG1 |
| 1 | 1111111 | 01011110 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 2 | 1111111 | 01011000 | 00000110 | RG2 := RG2 - RG1 |
| 2 | 1111111 | 10110000 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 3 | 1111111 | 10110110 | 00000110 | RG2 := RG2 + RG1 |
| 3 | 1111110 | 01101100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 4 | 1111110 | 01100110 | 00000110 | RG2 := RG2 - RG1 |
| 4 | 1111101 | 11001100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 5 | 1111101 | 11010010 | 00000110 | RG2 := RG2 + RG1 |
| 5 | 1111010 | 10100100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 6 | 1111010 | 10101010 | 00000110 | RG2 := RG2 + RG1 |
| 6 | 1110100 | 01010100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 7 | 1110100 | 01001110 | 00000110 | RG2 := RG2 - RG1 |
| 7 | 1101001 | 10011100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 8 | 1101001 | 10100010 | 00000110 | RG2 := RG2 + RG1 |
| 8 | 1010010 | 01000100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 9 | 1010010 | 00111110 | 00000110 | RG2 := RG2 - RG1 |
| 9 | 0100101 | 01111100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
Result: 100101
```
Результати обчислень будуть виведені, а користувач отримає повторний запит операції.
**Увага** результати обчислень не змінюють операнди, тому їх неможливо використовувати у майбутніх обчисленнях без перезапуску програми!
Також, для зручності користувач може об'єднати декілька операцій у один запис:
```
Choose the operation:
[a]ddition, [s]ubtraction, [m]ultiplication, [d]ivision, [q]uit
(110101 000110) > asm1d1
Sum: 111011
Carry: 0
Subtraction: 101111
Carry: 1
Multiplication (method 1):
+------+--------+--------+--------+-----+----------------------+
| iter | RG1 | RG2 | RG3 | CT | MicroOperations |
+------+--------+--------+--------+-----+----------------------+
| 0 | 000000 | 110101 | 000110 | 110 | - |
+------+--------+--------+--------+-----+----------------------+
| 1 | 000110 | 110101 | 000110 | 110 | RG1 := RG1 + RG3 |
| 1 | 000011 | 011010 | 000110 | 101 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 2 | 000001 | 101101 | 000110 | 100 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 3 | 000111 | 101101 | 000110 | 100 | RG1 := RG1 + RG3 |
| 3 | 000011 | 110110 | 000110 | 011 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 4 | 000001 | 111011 | 000110 | 010 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 5 | 000111 | 111011 | 000110 | 010 | RG1 := RG1 + RG3 |
| 5 | 000011 | 111101 | 000110 | 001 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
| 6 | 001001 | 111101 | 000110 | 001 | RG1 := RG1 + RG3 |
| 6 | 000100 | 111110 | 000110 | 000 | RG2 := RG1[1].r(RG2) |
| | | | | | RG1 := 0.r(RG1) |
| | | | | | CT := CT - 1 |
+------+--------+--------+--------+-----+----------------------+
Result: 000100111110
Division (method 1):
+------+---------+----------+----------+-----------------------+
| iter | RG3 | RG2 | RG1 | MicroOperations |
+------+---------+----------+----------+-----------------------+
| 0 | 1111111 | 00110101 | 00000110 | - |
+------+---------+----------+----------+-----------------------+
| 1 | 1111111 | 00101111 | 00000110 | RG2 := RG2 - RG1 |
| 1 | 1111111 | 01011110 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 2 | 1111111 | 01011000 | 00000110 | RG2 := RG2 - RG1 |
| 2 | 1111111 | 10110000 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 3 | 1111111 | 10110110 | 00000110 | RG2 := RG2 + RG1 |
| 3 | 1111110 | 01101100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 4 | 1111110 | 01100110 | 00000110 | RG2 := RG2 - RG1 |
| 4 | 1111101 | 11001100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 5 | 1111101 | 11010010 | 00000110 | RG2 := RG2 + RG1 |
| 5 | 1111010 | 10100100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 6 | 1111010 | 10101010 | 00000110 | RG2 := RG2 + RG1 |
| 6 | 1110100 | 01010100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 7 | 1110100 | 01001110 | 00000110 | RG2 := RG2 - RG1 |
| 7 | 1101001 | 10011100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 8 | 1101001 | 10100010 | 00000110 | RG2 := RG2 + RG1 |
| 8 | 1010010 | 01000100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
| 9 | 1010010 | 00111110 | 00000110 | RG2 := RG2 - RG1 |
| 9 | 0100101 | 01111100 | 00000110 | RG3 := l(RG3).!RG2[8] |
| | | | | RG2 := l(RG2).0 |
+------+---------+----------+----------+-----------------------+
Result: 100101
```
Таким чином обчислення послідовно над операндами без потреби у декількох запитах.