lab 1: 4 variables fix
This commit is contained in:
		
							parent
							
								
									ea3668ea54
								
							
						
					
					
						commit
						d5017dc61a
					
				
							
								
								
									
										30
									
								
								lab_1.py
									
									
									
									
									
								
							
							
						
						
									
										30
									
								
								lab_1.py
									
									
									
									
									
								
							@ -1,17 +1,37 @@
 | 
			
		||||
import numpy as np
 | 
			
		||||
from tensorflow.keras import Sequential, Input, layers, optimizers
 | 
			
		||||
 | 
			
		||||
x = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]])
 | 
			
		||||
y = np.array([0, 1, 1, 1, 0, 0, 0, 1])
 | 
			
		||||
x = np.array([
 | 
			
		||||
    [0, 0, 0, 0],
 | 
			
		||||
    [0, 0, 0, 1],
 | 
			
		||||
    [0, 0, 1, 0],
 | 
			
		||||
    [0, 0, 1, 1],
 | 
			
		||||
 | 
			
		||||
    [0, 1, 0, 0],
 | 
			
		||||
    [0, 1, 0, 1],
 | 
			
		||||
    [0, 1, 1, 0],
 | 
			
		||||
    [0, 1, 1, 1],
 | 
			
		||||
 | 
			
		||||
    [1, 0, 0, 0],
 | 
			
		||||
    [1, 0, 0, 1],
 | 
			
		||||
    [1, 0, 1, 0],
 | 
			
		||||
    [1, 0, 1, 1],
 | 
			
		||||
 | 
			
		||||
    [1, 1, 0, 0],
 | 
			
		||||
    [1, 1, 0, 1],
 | 
			
		||||
    [1, 1, 1, 0],
 | 
			
		||||
    [1, 1, 1, 1],
 | 
			
		||||
])
 | 
			
		||||
y = np.array([0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0])
 | 
			
		||||
 | 
			
		||||
model = Sequential([
 | 
			
		||||
    Input(shape=(3,)),
 | 
			
		||||
    Input(shape=(4,)),
 | 
			
		||||
    layers.Dense(3, activation="tanh"),
 | 
			
		||||
    layers.Dense(1, activation="sigmoid"),
 | 
			
		||||
])
 | 
			
		||||
 | 
			
		||||
model.compile(optimizer=optimizers.Adam(learning_rate=0.05), loss="binary_crossentropy", metrics=["accuracy"])
 | 
			
		||||
model.fit(x, y, epochs=100)
 | 
			
		||||
model.fit(x, y, epochs=200)
 | 
			
		||||
 | 
			
		||||
loss, accuracy = model.evaluate(x, y)
 | 
			
		||||
print(f"Loss: {loss}")
 | 
			
		||||
@ -19,4 +39,4 @@ print(f"Accuracy: {accuracy}")
 | 
			
		||||
 | 
			
		||||
prediction = model.predict(x)
 | 
			
		||||
for inp, pred in zip(x, prediction):
 | 
			
		||||
    print(inp, round(pred[0]))
 | 
			
		||||
    print(inp, round(pred[0]))
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user