lab 1: 4 variables fix

This commit is contained in:
rhinemann 2025-09-12 19:04:16 +03:00
parent ea3668ea54
commit d5017dc61a

View File

@ -1,17 +1,37 @@
import numpy as np import numpy as np
from tensorflow.keras import Sequential, Input, layers, optimizers from tensorflow.keras import Sequential, Input, layers, optimizers
x = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]]) x = np.array([
y = np.array([0, 1, 1, 1, 0, 0, 0, 1]) [0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 0, 1, 1],
[0, 1, 0, 0],
[0, 1, 0, 1],
[0, 1, 1, 0],
[0, 1, 1, 1],
[1, 0, 0, 0],
[1, 0, 0, 1],
[1, 0, 1, 0],
[1, 0, 1, 1],
[1, 1, 0, 0],
[1, 1, 0, 1],
[1, 1, 1, 0],
[1, 1, 1, 1],
])
y = np.array([0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0])
model = Sequential([ model = Sequential([
Input(shape=(3,)), Input(shape=(4,)),
layers.Dense(3, activation="tanh"), layers.Dense(3, activation="tanh"),
layers.Dense(1, activation="sigmoid"), layers.Dense(1, activation="sigmoid"),
]) ])
model.compile(optimizer=optimizers.Adam(learning_rate=0.05), loss="binary_crossentropy", metrics=["accuracy"]) model.compile(optimizer=optimizers.Adam(learning_rate=0.05), loss="binary_crossentropy", metrics=["accuracy"])
model.fit(x, y, epochs=100) model.fit(x, y, epochs=200)
loss, accuracy = model.evaluate(x, y) loss, accuracy = model.evaluate(x, y)
print(f"Loss: {loss}") print(f"Loss: {loss}")